您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 三套初中奥数题及答案
初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。2.下面的说法中正确的是()A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。两个单项式x²,2x2之和为3x2是单项式,排除B。两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。3.下面说法中不正确的是()A.有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有()A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。这四种说法中,不正确的说法的个数是()A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故丙错误。7.a代表有理数,那么,a和-a的大小关系是()A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()A.一样多B.多了C.少了D.多少都可能答案:C解析:设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为0.99∶1,所以第三天杯中水量比第一天杯中水量少了,选C。10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多B.减少C.不变D.增多、减少都有可能答案:A二、填空题(每题1分,共10分)1.19891990²-19891989²=______。答案:19891990²-19891989²=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979。解析:利用公式a²-b²=(a+b)(a-b)计算。2.1-2+3-4+5-6+7-8+…+4999-5000=______。答案:1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500。解析:本题运用了运算当中的结合律。3.当a=-0.2,b=0.04时,代数式a²-b的值是______。答案:0解析:原式==(-0.2)²-0.04=0。把已知条件代入代数式计算即可。4.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______千克。答案:45(千克)解析:食盐30%的盐水60千克中含盐60×30%(千克),设蒸发变成含盐为40%的水重x克,即60×30%=40%x解得:x=45(千克)。遇到这一类问题,我们要找不变量,本题中盐的含量是一个不变量,通过它列出等式进行计算。三、解答题1.甲乙两人每年收入相等,甲每年储蓄全年收入的15,乙每月比甲多开支100元,三年后负债600元,求每人每年收入多少?答案:解:设每人每年收入x元,甲每年开支4/5x元,依题意有:3(4/5x+1200)=3x+600即(3-12/5)x=3600-600解得,x=5000答:每人每年收入5000元所以S的末四位数字的和为1+9+9+5=24。4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程。答案:设上坡路程为x千米,下坡路程为y千米.依题意则:由②有2x+y=20,③由①有y=12-x,将之代入③得2x+12-x=20。所以x=8(千米),于是y=4(千米)。答:上坡路程为8千米,下坡路程为4千米。5.求和:。答案:第n项为所以。6.证明:质数p除以30所得的余数一定不是合数。证明:设p=30q+r,0≤r<30,因为p为质数,故r≠0,即0<r<30。假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5。再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾。所以,r一定不是合数。解:设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q)。可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q。(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故p+q=8。初中奥数题试题二一、选择题1.数1是()A.最小整数B.最小正数C.最小自然数D.最小有理数答案:C解析:整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D。1是最小自然数,正确,故选C。2.a为有理数,则一定成立的关系式是()A.7a>aB.7+a>aC.7+a>7D.|a|≥7答案:B解析:若a=0,7×0=0排除A;7+0=7排除C;|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B。3.3.1416×7.5944+3.1416×(-5.5944)的值是()A.6.1632B.6.2832C.6.5132D.5.3692答案:B解析:3.1416×7.5944+3.1416×(-5.5944)=3.1416(7.5944-5.5944)=2×3.1416=6.2832,选B。4.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是()A.225B.0.15C.0.0001D.1答案:B解析:-4,-1,-2.5,-0.01与-15中最大的数是-0.01,绝对值最大的数是-15,(-0.01)×(-15)=0.15,选B。二、填空题1.计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______。答案:(-1)+(-1)-(-1)×(-1)÷(-1)=(-2)-(-1)=-1。2.求值:(-1991)-|3-|-31||=______。答案:(-1991)-|3-|-31||=-1991-28=-2019。3.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009。则n的最小值等于______。答案:4解析:1990n的末四位数字应为1991+8009的末四位数字.即为0000,即1990n末位至少要4个0,所以n的最小值为4。4.不超过(-1.7)²的最大整数是______。答案:2解析:(-1.7)²=2.89,不超过2.89的最大整数为2。5.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______。答案:29解析:个位数比十位数大7的两位数有18,29,其中只有29是质数。三、解答题1.已知3x2-x=1,求6x3+7x2-5x+2000的值。答案:原式=2x(3x2-x)+3(3x2-x)-2x+2000=2x×1+3×1-2x+2000=2003。2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件。试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?答案:原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件。如果设每天获利为y元,则y=(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490。所以当x=3时,y最大=490元,即每件提价3元,每天获利最大为490元。3.如图1-96所示,已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°。求证:DA⊥AB。证明:∵CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°,∴∠ADC+∠BCD=180°,∴AD∥BC。又∵AB⊥BC,∴AB⊥AD。4.求方程|xy|-|2x|+|y|=4的整数解。答案:|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2。因为|x|+1>0,且x,y都是整数,所以5.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)答案:设设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以1.3433x+48755-1.393x=47761,所以0.0497x=994,所以x=20000(元),y=35000-20000=15000(元)。6.对k,m的哪些值,方程组至少有一组解?答案:因为(k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解。当k=1,m≠4时,①无解。所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解。初中奥数题试题三一、选择题1.下面给出的四对单项式中,是同类项的一对是()A.x²y与-3x²zB.3.22m²n3与n3m²C.0.2a²b与0.2ab²D.11abc与ab答案:B解析:字母相同,并且相同字母的指数也相同的两个式子叫同类项。2.(x-1)-(1-x)+(x+1)等于()A.3x-3B.x-1C.3x-1D.x-3答案:C解析:(x-1)-(1-x)+(x+1)=x-1-1+x+x+1=3x-1,选C。3.两个10次多项式的和是()A.20次多项式B.10次多项式C.100次多项式D.不高于10次的多项式答案:D解析:多项式x10+x与-x10+x²之和为x²+x是个次数低于10次的多项式,因此排除了A、B、C,选D。4.若a+1<0,则在下列每组四个数中,按从小到大的顺序排列的一组是()A.a,-1,1,-aB.-a,-1,1,aC.-1,-a,a,1D.-1,a,1,-a答案:A解析:由a+1<0,知a<-1,所以-a>1。于是由小到大的排列次序应是a<-1<1<-a,选A。5.a=-123.4-(-123.5),b=123.4-123.5,c=123.4-(-123.5),则()A.c>b>aB
本文标题:三套初中奥数题及答案
链接地址:https://www.777doc.com/doc-7555091 .html