您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 2016年成都市中考数学试题解析版
2016年四川省成都市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3B.﹣1C.1D.32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×1044.计算(﹣x3y)2的结果是()A.﹣x5yB.x6yC.﹣x3y2D.x6y25.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)7.分式方程=1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7887s211.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁9.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π二、填空题:本大题共4个小题,每小题4分,共16分11.已知|a+2|=0,则a=.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.三、解答题:本大共6小题,共54分15.(1)计算:(﹣2)3+﹣2sin30°+0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.16.化简:(x﹣)÷.17.在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)18.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.20.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.四、填空题:每小题4分,共20分21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.22.已知是方程组的解,则代数式(a+b)(a﹣b)的值为.23.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.24.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.25.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.五、解答题:共3个小题,共30分26.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?27.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.28.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.2016年四川省成都市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3B.﹣1C.1D.3【考点】有理数大小比较.【分析】利用两个负数,绝对值大的其值反而小,进而得出答案.【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.2.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:181万=1810000=1.81×106,故选:B.4.计算(﹣x3y)2的结果是()A.﹣x5yB.x6yC.﹣x3y2D.x6y2【考点】幂的乘方与积的乘方.【分析】首先利用积的乘方运算法则化简求出答案.【解答】解:(﹣x3y)2=x6y2.故选:D.5.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°【考点】平行线的性质.【分析】根据平行线性质求出∠3=∠1=50°,代入∠2+∠3=180°即可求出∠2.【解答】解:∵l1∥l2,∴∠1=∠3,∵∠1=56°,∴∠3=56°,∵∠2+∠3=180°,∴∠2=124°,故选C.6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.7.分式方程=1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=3【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选B.8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7887s211.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【解答】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C.9.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点【考点】二次函数的性质.【分析】根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2﹣3=0解的情况对D进行判断.【解答】解:A、a=2,则抛物线y=2x2﹣3的开口向上,所以A选项错误;B、当x=2时,y=2×4﹣3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2﹣3=0,此方程有两个不相等的实数解,所以D选项正确.故选D.10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π【考点】弧长的计算;圆周角定理.【分析】直接利用等腰三角形的性质得出∠A的度数,再利用圆周角定理得出∠BOC的度数,再利用弧长公式求出答案.【解答】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=100°,∵AB=4,∴BO=2,∴的长为:=π.故选:B.二、填空题:本大题共4个小题,每小题4分,共16分11.已知|a+2|=0,则a=﹣2.【考点】绝对值.【分析】根据绝对值的意义得出
本文标题:2016年成都市中考数学试题解析版
链接地址:https://www.777doc.com/doc-7558852 .html