您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2017年北京理数高考试题
绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)若集合A={x|–2x1},B={x|x–1或x3},则AB=(A){x|–2x–1}(B){x|–2x3}(C){x|–1x1}(D){x|1x3}(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示的程序框图,输出的s值为(A)2(B)32(C)53(D)85(4)若x,y满足x≤3,x+y≥2,则x+2y的最大值为y≤x,(A)1(B)3(C)5(D)9(5)已知函数1(x)33xxf,则(x)f(A)是奇函数,且在R上是增函数(B)是偶函数,且在R上是增函数(C)是奇函数,且在R上是减函数(D)是偶函数,且在R上是减函数(6)设m,n为非零向量,则“存在负数,使得mn”是“mn0<”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)32(B)23(C)22(D)2(8)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)(A)1033(B)1053(C)1073(D)1093第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。(9)若双曲线221yxm的离心率为3,则实数m=_______________.(10)若等差数列na和等比数列nb满足a1=b1=–1,a4=b4=8,则22ab=__________.(11)在极坐标系中,点A在圆22cos4sin40,点P的坐标为(1,0),则|AP|的最小值为.(12)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称。若1sin3,cos()=.(13)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为______________________________.(14)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标学科&网分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3。①记Q1为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是_________。②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_________。三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程。(15)(本小题13分)在△ABC中,A=60°,c=37a.(Ⅰ)求sinC的值;(Ⅱ)若a=7,求△ABC的面积.(16)(本小题14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD=6,AB=4.(I)求证:M为PB的中点;(II)求二面角B-PD-A的大小;(III)求直线MC与平面BDP所成角的正炫值。(17)(本小题13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组个50名,一组服药,另一组不服药。一段时间后,记录了两组患者的生理指标xy和的学科.网数据,并制成下图,其中“·”表示服药者,“+”表示为服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(Ⅱ)从图中A,B,C,D,四人中随机选出两人,记为选出的两人中指标x的值大于1.7的人数,求的分布列和数学期望E();(Ⅲ)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)(18)(本小题14分)已知抛物线C:y2=2px过点P(1,1).过点(0,12)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;(Ⅱ)求证:A为线段BM的中点.(19)(本小题13分)已知函数f(x)=excosx−x.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)在区间[0,2]上的最大值和最小值.(20)(本小题13分)设{an}和{bn}是两个等差数列,记cn=max{b1–a1n,b2–a2n,…,bn–ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数.(Ⅰ)若an=n,bn=2n–1,求c1,c2,c3的值,并证明{cn}是等差数列;(Ⅱ)证明:或者对任意正数M,存在正整数m,当n≥m时,ncMn;或者存在正整数m,使得cm,cm+1,cm+2,…是等差数列.
本文标题:2017年北京理数高考试题
链接地址:https://www.777doc.com/doc-7559612 .html