您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 电子秤394797676
1山东省电子设计大赛(2004年)实用电子秤(C)编号:C甲1009参赛学校:山东大学指导教师:万鹏姚福安设计者:刘永胜杜辉杨媛媛2004年9月13号2摘要本系统采用单片机AT89S52为控制核心,实现电子秤的基本控制功能。系统的硬件部分包括最小系统板,数据采集、人机交互界面三大部分。最小系统部分主要是扩展了外部数据存储器,数据采集部分由压力传感器、信号的前级处理和A/D转换部分组成。人机界面部分为键盘输入,12864点阵式液晶显示,可以直观的显示中文,使用方便。软件部分应用单片机C语言实现了本设计的全部控制功能,包括基本的称重功能,和发挥部分的显示购物清单的功能,可以设置日期和重新设定10种商品的单价,具有超重报警功能,由于系统资源丰富,还可以方便的扩展其应用第一部分:方案论证与比较一、控制器部分本系统基于51系列单片机来实现,因为系统需要大量的控制液晶显示和键盘。不宜采用大规模可编程逻辑器件:CPLD、FPGA来实现。(因为大规模可编程逻辑器件一般是使用状态机方式来实现,即所解决的问题都是规则的有限状态转换问题。本系统状态较多,难度较大。)另外系统没有其它高标准的要求,我们最终选择了AT89S52通用的比较普通单片机来实现系统设计。内部带有8KB的程序存储器,在外面扩展了32K数据存储器,以满足系统要求。二、数据采集部分(1)、传感器题目要求称重范围9.999Kg,重量误差不大于005.0Kg,考虑到秤台自重、振动和冲击分量,还要避免超重损坏传感器,所以传感器量程必须大于额定称重—Kg999.9。我们选择的是L-PSIII型传感器,量程20Kg,精度为%01.0,满量程时误差0.002Kg。可以满足本系统的精度要求。其原理如下图所示:3称重传感器主要由弹性体、电阻应变片电缆线等组成,内部线路采用惠更斯电桥,当弹性体承受载荷产生变形时,输出信号电压可由下式给出:EinR4R4R3R3R2R2R1R1)42(42E△△△△RRRRout(2)、前级放大器部分压力传感器输出的电压信号为毫伏级,所以对运算放大器要求很高。我们考虑可以采用以下几种方案可以采用:方案一、利用普通低温漂运算放大器构成多级放大器。普通低温漂运算放大器构成多级放大器会引入大量噪声。由于A/D转换器需要很高的精度,所以几毫伏的干扰信号就会直接影响最后的测量精度。所以,此中方案不宜采用。方案二、由高精度低漂移运算放大器构成差动放大器。差动放大器具有高输入阻抗,增益高的特点,可以利用普通运放(如OP07)做成一个差动放大器。电阻R1、R2电容C1、C2、C3、C4用于滤除前级的噪声,C1、C2为普通小电容,可以滤除高频干扰,C3、C4为大的电解电容,主要用于滤除低频噪声。优点:输入级加入射随放大器,增大了输入阻抗,中间级为差动放大电路,滑动变阻器R6可以调节输出零点,最后一级可以用于微调放大倍数,使输出满足满量程要求。输出级为反向放大器,所以输出电阻不是很大,比较符合应用要求。缺点:此电路要求R3、R4相等,误差将会影响输出精度,难度较大。实际测量,每一级运放都会引入较大噪声。对精度影响较大。4方案三:采用专用仪表放大器,如:INA126,INA121等。此类芯片内部采用差动输入,共模抑制比高,差模输入阻抗大,增益高,精度也非常好,且外部接口简单。以INA126为例,接口如下图所示:放大器增益GRKG805,通过改变GR的大小来改变放大器的增益。基于以上分析,我们决定采用制作方便而且精度很好的专用仪表放大器INA126。(3)、A/D转换器由上面对传感器量程和精度的分析可知:A/D转换器误差应在%03.0以下12位A/D精度:10Kg/4096=2.44g14位A/D精度:10Kg/16384=0.61g考虑到其他部分所带来的干扰,12位A/D无法满足系统精度要求。所以我们需要选择14位或者精度更高的A/D。方案一、逐次逼近型A/D转换器,如:ADS7805、ADS7804等。逐次逼近型A/D转换,一般具有采样/保持功能。采样频率高,功耗比较低,是理想的高速、高精度、省电型A/D转换器件。高精度逐次逼近型A/D转换器一般都带有内部基准源和内部时钟,基于89C52构成的系统设计时仅需要外接几个电阻、电容。但考虑到所转换的信号为一慢变信号,逐次逼近型A/D转换器的快速的优点不能很好的发挥,且根据系统的要求,14位AD足以满足精度要求,太高的精度就反而浪费了系统资源。所以此方案并不是理想的选择。方案二、双积分型A/D转换器:如:ICL7135、ICL7109等。双积分型A/D转换器精度高,但速度较慢(如:ICL7135),具有精确的差分输入,输入阻抗高(大于M310),可自动调零,超量程信号,全部输出于TTL电平兼容。双积分型A/D转换器具有很强的抗干扰能力。对正负对称的工频干扰信号积分为零,所以对50HZ的工频干扰抑制能力较强,对高于工频干扰(例如噪声电压)已有良好的滤波作用。只要干扰电压的平均值为零,对输出就不产生影响。尤其对本系统,缓慢变化的压力信号,很容易受到工频信号的影响。故而采用双积分型A/D转换器可大大降低对滤波电路的要求。作为电子秤,系统对AD的转换速度要求并不高,精度上14位的AD足以满足要求。另外双积分型A/D转换器较强的抗干扰能力,和精确的差分输入,低廉的价格。综合的分析其优点和缺点,我们最终选择了ICL7135。三、人机交互界面5(1)、键盘输入键盘输入是人机交互界面中最重要的组成部分,它是系统接受用户指令的直接途径。我们采用了专用的键盘显示芯片ZLG7289。Intel8279是一种比较成熟的可编程键盘/显示芯片,可以满足小系统的要求。ZLG7289是周立功单片机公司设计的串行输入输出可编程键盘/显示芯片有强大的键盘显示功能,支持64键控制。可以比较方便的扩展系统。另外ZLG7289内部有译码电路,大大简化了程序。我们选择功能更好的ZLG7289作为键盘扫描显示芯片(2)、显示输出虽然ZLG7289具有控制数码管显示的功能,但考虑到本题目要求中文显示,数码管无法满足,只能考虑用带有中文字库的液晶显示器。由于可以分页显示,无需太大屏幕,我们选择了点阵式128×64型LCD—OCM4X8C。第二部分:具体实现方案一、硬件组成:(一)、硬件结构框图如下:(二)、各部分硬件电路实现(1)、基于AT89S52的主控电路图6主控电路以89C52为核心扩展32KRAM;单片机使用6M晶振,P0口外接上拉电阻,增大了带负载能力;A12~A15接74LS138译码器,输出作外部片选信号。扩展了几个接口用于其它部分于单片机的通信(2)前端信号处理INA126构成的放大器及滤波电路:7通过调节GR的阻值来改变放大倍数。微弱信号Vi1和Vi2被分别放大后从INA126的第6脚输出。A/D转换器ICL7135的输入电压变化范围是-2V~+2V,传感器的输出电压信号在0~20mv左右,因此放大器的放大倍数在200~300左右,可将GR接成K1的滑动变阻器。由于ICL7135对高频干扰不敏感,所以滤波电路主要针对工频及其低次谐波引入的干扰。因为压力信号变化十分缓慢,所以滤波电路可以把频率做得很低。(3)A/D转换器基于ICL7135的A/D转换器实现电路:基准源选用芯片MC14032.5V分压得到:由于ICL7135内部没有振荡器,所以需要外接。但A/D转换器精度与时钟频率的漂移无关。正向积分时间T1和反向积分时间T2按相同比例增加并不影响测8量的结果。ICL7135的时钟频率典型值为200kHz最高允许为1200kHz,时钟频率越高,转换速度越快。每输出一位BCD码的时间为200个时钟周期,选通脉冲位于数据脉冲的中部,如果时钟频率太高,则数据的接受程序还没有接受完毕,数据就已经消失了。考虑到此系统频率要求不是太高,且单片机的工作频率也不是很高,因此我们取时钟频率的典型值:200kHz。由于频率比较低,对时钟漂移要求不高,我们采用阻容方式实现了基本的振荡电路。如下:振荡频率约为160kHz。此外ICL7135外部还需要外接积分电阻、积分电容,但A/D转换器精度与外接的积分电阻、积分电容的精度无关,故可以降低对元件质量的要求。不过积分电容和积分电容的介质损耗会影响到A/D转换器的精度,所以应采用介质损耗较小的聚丙乙烯电容ICL7135还需要外接基准电源,这是因为芯片内部的基准源一般容易受到温度的影响,而基准电源的变化会直接影响转换精度。所以当精度要求较高时,应采用外接基准源。一般接其典型值1V。(4)、人机交互界面(a)、键盘接口图:键盘控制芯片ZLG7289控制键盘的扫描,当监测到有键按下后ZLG7289的9脚便产生一个低电平通知单片机,单片机可以采用查询或者中断方式将数据通过P1.5以串行方式读入。因为查询方式会浪费大量的时间,所以本系统采用的是中断方式。(b)、LCD显示接口电路9.LCD复位信号通过反相器接到单片机的RESET上,上电或手动复位时将随单片机同时复位。由于复位后并行口输出高电平,LCD处于选中状态,此时LCD将输出内部状态字,将会影响数据总线上的数据传输。所以外接一个反相器。二、软件组成:(一)、流程图10主程序流程如图所示:11中断服务程序流程图如下:(2)、软件说明由于涉及到大量数据的运算,程序不宜采用汇编语言,C语言大大缩短了开发时间,且程序可读性非常好。12程序中对AD采入的数据进行了数字滤波,进一步减小AD读入数据的误差。7289键盘控制采用中断方式,加快了程序的执行效率。详细的操作过程见使用说明。第三部分:测试及结果分析一、测试结果及误差分析:砝码重量(g)实际显示重量1(g)实际显示重量2(g)实际显示重量3(g)1009999981501481471492001951971982502442462443002952962943503423443434003933953964504434434445004934944955505525515536005905935946506416416427006896926937507407407418007907917908508398408429008878888889509389389381000986987987注:由于传感器和其他器件本身并非理想线性,程序中对实测数据进行了线性补偿。误差分析:经校准,非线性补偿后,误差已基本达到要求。所用测量仪器:总重1Kg的砝码,万用表,示波器第四部分:使用操作说明本系统采用32键键盘来实现,分为数字键:0-9,商品1-商品10,6个控制键。本系统开机显示公司名称,后提示输入收银员编号和当前日期。正确输入后,进入称重显示。13数字键和小数点键:用于输入单价;累加键:相当于确认,可以将当然信息保存至购物清单;并且将金额累加,得到所购买商品的总金额。去皮键:用于去除皮重;清单价:用于输入的单价错误的时候,重新输入;购物清单键:当需要显示当前顾客的总的购物清单时,可以连续按下购物清单键,分页显示所购买的商品信息,并且若以达到最后一页,则显示总计金额,收银员编号,和公司名称,当然日期。运行中如果顾客购买已存入的10种商品,只需按下相应的商品键,既可以将商品的名称和单价以中文的形式显示,同样累加键保存此商品的信息,包括其重量,金额和当前累计金额。另外,已存入的10种商品的单价均可重新设置,直接输入其单价即可,方便实用。如果所称重物超过了系统最大量程10Kg,则蜂明器发出报警声音。第五部分:附录电子秤的信号采集、处理、显示的程序.#includereg52.h#includeabsacc.h//ad控制线#definead_244XBYTE[0xbfff];sbitad_stb=P3^3;sbitad_start=P1^1;//lcd控制线sbitlcd_di=P1^7;sbitlcd_rw=P1^2;sbitlcd_e=P1^0;//7289控制线sbitcs7289=P1^3;sbitclk728
本文标题:电子秤394797676
链接地址:https://www.777doc.com/doc-76427 .html