您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > matlab > 主成分分析及matlab实现..
主成分分析主成分分析的基本原理主成分分析的计算步骤主成分分析方法应用实例在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息?问题的提出:事实上,这种想法是可以实现的,主成分分析方法就是综合处理这种问题的一种强有力的工具。主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。例如,某人要做一件上衣要测量很多尺寸,如身长、袖长、胸围、腰围、肩宽、肩厚等十几项指标,但某服装厂要生产一批新型服装绝不可能把尺寸的型号分得过多?而是从多种指标中综合成几个少数的综合指标,做为分类的型号,利用主成分分析将十几项指标综合成3项指标,一项是反映长度的指标,一项是反映胖瘦的指标,一项是反映特体的指标。一、主成分分析的基本原理假定有n个样本,每个样本共有p个变量,构成一个n×p阶的数据矩阵npnnppxxxxxxxxxX212222111211(1.1)当p较大时,在p维空间中考察问题比较麻烦。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多变量指标所反映的信息,同时它们之间又是彼此独立的。定义:记x1,x2,…,xP为原变量指标,z1,z2,…,zm(m≤p)为新变量指标11111221221122221122221............1ppppmmmmppiipzlxlxlxzlxlxlxzlxlxlxll(1.2)系数lij的确定原则:①zi与zj(i≠j;i,j=1,2,…,m)相互无关;②z1是x1,x2,…,xP的一切线性组合中方差最大者,z2是与z1不相关的x1,x2,…,xP的所有线性组合中方差最大者;…;zm是与z1,z2,……,zm-1都不相关的x1,x2,…xP,的所有线性组合中方差最大者。则新变量指标z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第1,第2,…,第m主成分。从以上的分析可以看出,主成分分析的实质就是确定原来变量xj(j=1,2,…,p)在诸主成分zi(i=1,2,…,m)上的荷载lij(i=1,2,…,m;j=1,2,…,p)。从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。二、主成分分析的计算步骤设有n个样品,每个样品观测p个指标,将原始数据写成矩阵1.将原始数据标准化。这里不妨设上边矩阵已标准化了。方法2.建立变量的相关系数阵:12211()()()()nkiikjjkijnnkiikjjkkxxxxrxxxx3.求R的特征根及相应的单位特征向量:4.写出主成分计算主成分贡献率及累计贡献率贡献率累计贡献率),,2,1(1pipkki),,2,1(11pipkkikk一般取累计贡献率达85%~95%的特征值所对应的第1、第2、…、第m(m≤p)个主成分。m,,,21三、实例演示例对全国30个省市自治区经济发展基本情况的八项指标作主成分分析,原始数据如下:第一步将原始数据标准化。第二步建立指标之间的相关系数阵R如下第三步求R的特征值和特征向量。从上表看,前3个特征值累计贡献率已达89.564%,说明前3个主成分基本包含了全部指标具有的信息,我们取前3个特征值,并计算出相应的特征向量:因而前三个主成分为:第一主成分:第二主成分:212346780.1079950.2585120.2875360.4009310.4043150.4988010.488680.167392FXXXXXXXX第三主成分:在第一主成分的表达式中第一、二、三项指标的系数较大,这三个指标起主要作用,我们可以把第一主成分看成是由国内生产总值、固定资产投资和居民消费水平所该划的反映经济发展状况的综合指标;在第二主成分中,第四、五、六、七项指标的影响大,且第六、七项指标的影响尤其大,可将之看成是反映物价指数、职工工资和货物周转量的综合指标;在第三主成分中,第八项指数影响最大,远超过其它指标的影响,可单独看成是工业总产值的影响。zscorecorrcoefeig根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。n
本文标题:主成分分析及matlab实现..
链接地址:https://www.777doc.com/doc-7768072 .html