您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高考模拟试题数学试卷
高考模拟试题数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷4至9页,共150分,考试用时120分钟.第Ⅰ卷(选择题共60分)注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、班别、学号填写清楚。2.每小题选出答案后,用铅笔马答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。3.考试结束,监考人将本试卷和答题卡一并收回。参考公式:三角函数的和差化积公式2cos2sin2sinsin2sin2cos2sinsin2cos2cos2coscos2sin2sin2coscos正棱台、圆台的侧面积公式lccS)(21台侧其中c′、c分别表示上、下底面周长,l表示斜高或母线长台体的体积公式hSSSSV)(31台体其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数z=l-i,则|z4|=()(A)2(B)4(C)8(D)162.直线mxy33与圆x2+y2=1在第一象限内有两个不同的交点,则m的取值范围是()(A)23m(B)33m(C)3321m(D)133m3.集合M={a,b,c},N={-1,0,1},映射f:M→N满足f(a)+f(b)+f(c)=0,那么映射f:M→N的个数是()(A)4(B)5(C)6(D)74.若圆的极坐标方程为),6sin(2p则圆心的极坐标是()(A)(2,6)(B)(2,3)(C)(1,6)(D)(1,3)5.已知02log2logab,则nnnnnbabalim的值为()(A)1(B)-1(C)0(D)不存在6.圆锥轴截面的顶角为120,过顶点的截面三角形的最大面积为2,则圆锥的侧面积及体积分别为()(A)31,3(B),32(C)3,2(D)9,47.五个身高均不相同的学生排成一排俣影留念,高个子站中间,从中间到左边和从中间到右边均一个比一个矮,则这样的排法共有()(A)6种(B)8种(C)12种(D)16种8.要得到函数1cos2cossin322xxxy的图象,只要将函数xy2sin2的图象()(A)向左平移6个单位(B)向右平移6个单位(C)向左平移12个单位(D)向右平移12个单位9.函数aaxxf213)(在(-1,1)上存在x0,使0)(0xf,则a的取值范围是()(A)511a(B)51a(C)511aa或(D)1a10.已知又曲线)(14:222NbbyxC的焦点是2,1FF,而点P在双曲线C上,|PF1|,|F1F2|,|PF2|成等比数列,且|PF2|4,则b=()(A)1(B)2(C)3(D)411.如图示,在正方体ABCD-A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()(A)(B)(C)(D)12.若xR,nN,定义:Mnx=x(x+1)(x+2)…(x+n-1)如)52)(42)(32)(22)(12(226M,则函数2110)(xMxf的奇偶性为()(A)是偶函数而不是奇函数(B)是奇函数而不是偶函数(C)既是偶函数又是奇函数(D)既不是偶函数也不是奇函数第Ⅱ卷(非选择题共60分)注意事项:第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中二、填空题:本大题共4个小题,每小题4分,共16分,把答案填在题中横线上13.函数)2arccos(2xy的反函数是:.14.若nxx)1(2展开式中x的一次项是第6项,则n的值是.15.我国于2003年10月15日成功发射载入“神舟五号”宇宙飞船,杨利伟随飞船绕地球习行了14圈,飞船飞行的轨道是以地球的中心为一个焦点的椭圆,近地点距地面200千米,远地点距地面350千米,若地球半径为6371千米,则此椭圆的离心率为.16.已知直线m平面a,直线n平面,给出下列命题:①a∥mn;②am∥n;③m∥na;④mna∥;其中正确命题的序号是.(要注:把正确命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文说明、证明过程或演算步骤.17.(本小题满分12分)已知复数,3arg,)cos1(sinziAAzA、B、C是△ABC的内角(1)求A:(2)求sinB+sinC的取值范围18.(本小题满分12分)如图所示的一个几何体中,底面ABCD是矩形,AB=9,BC=8,EF∥平面ABCD,且EF=3,EA=ED=FB=FC=13.(1)求异面直线AE与CF所成的角;(2)求二面角F-BC-D的大小;19.(本小题满分12分)在等差数列na中,首项a1=1,数列nb满足nanb)21(,且641321bbb.(1)求数列na的通项公式:(2)求证:22211nnbababa.20.(本小题满分12分)已知Rt△OAB的三顶点O、A、B都在抛物线)0(2:2ppxyC上(如图),OAOB.(1)若直线OA的斜率为2,|AB|=135,求抛物线C的方程;(2)若A(x1,y1),B(x2,y2),求证:x1x2与y1y2均为定值.21.(本小题满分12分)随着我国加入WTO,某企业决定从甲、乙两种畅销产品中选择一种进行投资生产,打入国际市场已知投资生产这两种产品的有关数据如下表(单位:万美元)年固定成本每件产品成本每件产品销售价每年最多生产的件数甲产品30a10200乙产品50818120其中年固定成本与生产的件数无关,a为常数,且4≤a≤8另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.(1)写出该厂分别投资生产甲、乙两种产品的年利润y1,y2与生产相应产品的件数)(Nxx之间的函数关系式;(2)分别求出投资生产这两种产品的最大年利润;(3)如何决定投资可获最大年利润?项目类别22.(本小题满分14分)已知)(xf是定义在(-,+)上的偶函数,且满足)()2(xfxf,当2,0x时,)(xf=-2(x-3)2+4.(1)当2,0x时,求)(xf的解析式;(2)若矩形ABCD的两个顶点A、B在x轴上,C、D在函数y=)(xf(0≤x≤2)的图象上,求矩形ABCD面积的最大值.高考模拟试题数学参考答案一、选择题:1.B2.C3.D4.D5.A6.B7.A8.D9.C10.A12.C12.B二、填空题:13.);20(22cosxxy14.815.66467516.①③三、解答题:17.解:(1)∵3sincos1)(argtgAAztg……(2分)∴32,32,32AAAtg……(4分)(2)∵2cos6sin22cos2sin2sinsinCBCBCBCB……(6分))6cos(2cosCCB……(7分)又∵0C3,∴-66-C6……(9分)∴1)6cos(23C……(11分)∴sinB+sinC的取值范围是:(23,1……(12′)18.解:在平面ABEF内,过F作FG∥AE交AB于点G,则∠GFC为异面直线AE与CF所成的角,……(2分)连结GC,∵EF=3,AB=9,∴GB=6又∵四边形ABCD为矩形,且BC=8,在Rt△GBC中,GC=108622;又在△FGC中,FG=FC=13,GC=10.…………(4分)∴169119131321013132cos222222FCFCGCFCFGFGC∴异面直线AE与CF所成的角为arc169119cos。……(6分)(2)∵FB=FG=FC,∴F在平面ABCD上的射影H是Rt△GBC的外心,即H是GC的中点,取BC的中点M,连结FM、HM.…………(7分)∵FB=FC=13,∴FMBC.①………(8分)且FM=15341322.又∵HM∥AB,HM=21GB=3,∴HMBC.②…………(9分)由①、②查得FMH是二面角F-BC-D的平面角.………(10分)在Rt△FHM中,,511531533cosFMHMFMH∴二面角F-BC-D的大小为arc51153cos……(12分)19.解:(1)设等差数列na的公差为d.∵nanba)21(,11∴ddbbb213121)21(,)21(,21……(3分)由641321bbb解得1d……(5分)∴nnan1)1(1……(6分)(2)由(1)得,nnb)21(设nnnnnbababaS)21()21(221122211则132)21()21(2)21(121nnnS两式相减得:132)21()21()21()21(2121nnnnS……(9分)∴)221(2)21(2211)21(121211nnnnnnnS……(11分)∵nnn22110∴nnbababa22112……(12分)20.解:(1)由),2(222ppApxyxy……(1分)同理可得B(8P,-4P)……(2分)由|AB|=513得135)4()28(22pppp…(3分)42p……(4分)p0,∴p=2.……(5分)∴C的方程为xy42(2)∵,2),(),,(22211上在pxyyxByxA∴2221212,2pxypxy……(7分)又∵OAOB,∴02121yyxx……(9分)21y22y=)(42定值p……(11分)∴)(422121定值pyyxx……(12分)21.解:(1)依题:Nxxxay,2000,30)10(1……(2分)Nxxxxy,1200,501005.022……(4分)(2)∵,010a∴上是增函数在200,0,30)10(1xay∴aay200197030200)10(1最大……(6分)∵450)100(05.022xy∴当450,]120,0[1002最大时yx……(8分)(3)令4502001970a,得a=7.6……(9分)∴当4≤a7.6时,投资甲产品……(10分)当7.6a≤8时,投资乙产品……(11分)当a=7.6时,投资甲乙两产品均可……(12分)(由45020019704502001970aa或也可)22.解:(1))(xf是定义在(-,+)上的偶函数,且)()2(xfxf当1,0x时,有2≤x+2≤3故4)1(243)2(2)2()(22xxxfxf……(2分)当2,1x,有2,34x,则3,24x……(3分)有)4()4()()(xfxfxfxf……(4分)4)1(24)34(222xx……(5分)∴当2,0x时,4)1(2)(2xxf……(6分)(2)∵矩形两顶点A、B在x轴上,C、D在4)1(2)(2xxf(0≤x≤2)的图象上,如图所示,设|AB|=2t,)1,0(t,则A(1-t,0),B(1+t.0)则|BC|=|AD|=f(1+t)=-2t2+4∴)2(4)42(2||||22ttttBCABSABCD……(9分))2)(2(28)2(4222222tttttSABCD∵,02,0222tt∴ABCDS2≤8·33222)34(8]3)2()2(2[ttt……(12分)当且仅当2222tt,即)1,0(36t,即当点A的横坐标)63(310x时取等号…
本文标题:高考模拟试题数学试卷
链接地址:https://www.777doc.com/doc-7780174 .html