您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】韶关市始兴县墨江中学2015届九年级上期末数学试卷
广东省韶关市始兴县墨江中学2015届九年级上学期期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,则∠D的度数为()A.60B.80C.100D.1203.(3分)已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()A.B.C.D.4.(3分)下列一元二次方程中,有两个不相等实数根的方程是()A.x2﹣3x+1=0B.x2+1=0C.x2﹣2x+1=0D.x2+2x+3=05.(3分)小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A.B.C.D.6.(3分)如图,DC是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BFC.OF=CFD.∠DBC=90°7.(3分)已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2B.3C.4D.88.(3分)下列命题:①圆的切线垂直于经过切点的半径;②掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是0.5;③相等的圆心角所对的弧相等;④某种彩票的中奖率为,佳佳买10张彩票一定能中奖.其中,正确的命题是()A.①②B.①②③C.①②④D.①②③④9.(3分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1D.y=3(x+2)2+110.(3分)把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.B.C.D.4二、填空题(每小题4分,共24分)11.(4分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.12.(4分)已知x=﹣1是关于x的方程2x2+ax﹣5=0的一个根,a=.13.(4分)如图,已知OA,OB是⊙O的两条半径,且OA⊥OB,点C在圆周上(与点A、B不重合),则∠ACB的度数为.14.(4分)小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是.15.(4分)如图所示的曲线是一个反比例函数图象的一支,点A在此曲线上,则该反比例函数的解析式为.16.(4分)如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是.三、解答题(每小题0分,共18分)17.解方程:x2+x﹣1=0.18.解方程:x(x+1)=3x+3.19.如图,在⊙O中,CD为直径,AB为弦,且CD平分AB于E,OE=3cm,AB=8cm.求:⊙O的半径.四、解答题(每小题0分,共21分)20.如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.21.在一个口袋中有5个球,其中2个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球.(1)求取出一个球是红的概率;(2)把这5个小球中的两个标号为1,其余分别标号为2,3,4,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率.22.某商场今年二月份的营业额为400万元,三月份由于经营不善,其营业额比二月份下降10%.后来通过加强管理,五月份的营业额达到518.4万元.求三月份到五月份营业额的月平均增长率.23.如图,已知反比例函数y=的图象与一次函数y=ax+b的图象交于M(2,m)和N(﹣1,﹣4)两点.(1)求这两个函数的解析式;(2)求△MON的面积;(3)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.24.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=,求⊙O的半径r.25.在平面直角坐标系中,Rt△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(﹣3,1).(1)求点B的坐标;(2)求过A、O、B三点的抛物线的解析式;(3)设点P为抛物线上到x轴的距离为1的点,点B关于抛物线的对称轴l的对称点为B1,求点P的坐标和△B1PB的面积.广东省韶关市始兴县墨江中学2015届九年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形,掌握中心对称图形与轴对称图形的概念即可,属于基础题.2.(3分)圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,则∠D的度数为()A.60B.80C.100D.120考点:圆心角、弧、弦的关系.分析:根据圆内接四边形的对角互补和四边形的内角和为360度进行分析求解.解答:解:∵内接四边形的对角互补,∴∠A:∠B:∠C:∠D=3:4:6:5设∠A的度数为3x,则∠B,∠C,∠D的度数分别为4x,6x,5x∴3x+4x+6x+5x=360°∴x=20°∴∠D=100°故选C.点评:本题考查圆内接四边形的对角互补和四边形的内角和为360°的理解及运用.3.(3分)已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()A.B.C.D.考点:反比例函数的图象;反比例函数的应用.专题:应用题.分析:先写出三角形底边a上的高h与底边a之间的函数关系,再根据反比例函数的图象特点得出.解答:解:已知三角形的面积s一定,则它底边a上的高h与底边a之间的函数关系为S=ah,即h=;是反比例函数,且2s>0,h>0;故其图象只在第一象限.故选D.点评:本题考查反比例函数的图象特点:反比例函数y=的图象是双曲线,与坐标轴无交点,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.4.(3分)下列一元二次方程中,有两个不相等实数根的方程是()A.x2﹣3x+1=0B.x2+1=0C.x2﹣2x+1=0D.x2+2x+3=0考点:根的判别式.专题:计算题.分析:计算出各项中方程根的判别式的值,找出大于0的选项即可.解答:解:A、这里a=1,b=﹣3,c=1,∵△=b2﹣4ac=5>0,∴方程有两个不相等的实数根,本选项符合题意;B、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣2,c=1,∵△=b2﹣4ac=0,∴方程有两个相等的实数根,本选项不合题意;D、这里a=1,b=2,c=3,∵△=b2﹣4ac=﹣5<0,∴方程没有实数根,本选项不合题意;故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.5.(3分)小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A.B.C.D.考点:概率公式.分析:在十张数字卡片中,恰好能被4整除的有4,8,共2个;求抽到的数能被4整除的可能性个数,进而得出答案.解答:解:∵1~10中的数有:4、8,共2个,就有10张卡片,2÷10=,∴从中任意摸一张,那么恰好能被4整除的概率是;故选:C.点评:此题主要考查了概率公式,概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(3分)如图,DC是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BFC.OF=CFD.∠DBC=90°考点:垂径定理;圆心角、弧、弦的关系;圆周角定理.专题:几何图形问题.分析:根据垂径定理可判断A、B,根据圆周角定理可判断D,继而可得出答案.解答:解:∵DC是⊙O直径,弦AB⊥CD于F,∴点D是优弧AB的中点,点C是劣弧AB的中点,A、=,正确,故本选项错误;B、AF=BF,正确,故本选项错误;C、OF=CF,不能得出,错误,故本选项符合题意;D、∠DBC=90°,正确,故本选项错误;故选C.点评:本题考查了垂径定理及圆周角定理,解答本题的关键是熟练掌握垂径定理、圆周角定理的内容,难度一般.7.(3分)已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2B.3C.4D.8考点:根与系数的关系.专题:计算题.分析:利用根与系数的关系来求方程的另一根.解答:解:设方程的另一根为α,则α+2=6,解得α=4.故选C.点评:本题考查了根与系数的关系.若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.8.(3分)下列命题:①圆的切线垂直于经过切点的半径;②掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是0.5;③相等的圆心角所对的弧相等;④某种彩票的中奖率为,佳佳买10张彩票一定能中奖.其中,正确的命题是()A.①②B.①②③C.①②④D.①②③④考点:命题与定理.分析:根据切线的性质对①进行判断;根据概率公式对②进行判断;根据圆心角、弧、弦的关系对③进行判断;根据概率的意义对④进行判断.解答:解:圆的切线垂直于经过切点的半径,所以①正确;掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是0.5,所以②正确;在同圆或等圆中,相等的圆心角所对的弧相等,所以③错误;某种彩票的中奖率为,佳佳买10张彩票不一定能中奖,所以④错误.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.(3分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1D.y=3(x+2)2+1考点:二次函数图象与几何变换.分析:先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.解答:解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选C.点评:本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.10.(3分)把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.B.C.D.4考点:旋转的性质.专题:几何图形问题.分析:首先由旋转的角度为15°,可知∠ACD1=45°.已知∠CAO=45
本文标题:【解析版】韶关市始兴县墨江中学2015届九年级上期末数学试卷
链接地址:https://www.777doc.com/doc-7836559 .html