您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】武珞路中学2014-2015年八年级下期中数学模拟试卷
湖北省武汉市武珞路中学2014-2015学年八年级下学期期中数学模拟试卷一、选择题(每小题3分,共30分)1.(3分)有意义,a的取值范围是()A.a≥2B.a>2C.a≥﹣2D.a>﹣22.(3分)下列计算,正确的是()A.B.C.D.3.(3分)化简:正确的是()A.B.C.4D.4.(3分)下列各式中属于最简二次根式的是()A.B.C.D.5.(3分)a、b、c为△ABC三边,不是直角三角形的是()A.a2=c2﹣b2B.a=,b=1,c=C.∠A:∠B:∠C=3:4:5D.a=8k,b=17k,c=15k6.(3分)下列命题的逆命题是正确的是()A.若a=b,则a2=b2B.若a>0,b>0,则ab>0C.等边三角形是锐角三角形D.全等三角形的对应边相等7.(3分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2,则AB=()A.4B.C.D.8.(3分)▱ABCD中,BC=10,AC与BD交于O,AO=4,BO=7,△ABC比△DBC周长小()A.3B.4C.5D.69.(3分)下列条件能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠DB.AB∥CD,AD=BCC.AB∥CD,∠A=∠CD.AO=BO,CO=DO10.(3分)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为()A.B.C.1D.二、填空题(每小题3分,共18分)11.(3分)计算:÷=.12.(3分)已知x=+1,y=﹣1,则x2﹣y2=.13.(3分)一木杆在离地面3米处折断,木杆顶端落在离木杆底端4米处,木杆折断之前高米.14.(3分)△ABC中,D、E、F分别为AB、AC、BC的中点,若AC=5,AB=10,BC=7,则△DEF的周长为.15.(3分)▱ABCD中,AD=12,BD=10,AC=26,则▱ABCD的面积是.16.(3分)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于.三、解答题(共72分)17.(5分)计算:.18.(5分)计算:.19.(6分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F,求证:OE=OF.20.(6分)如图,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠BCD是直角吗?21.(6分)已知a﹣=﹣,求﹣.22.(6分)已知Rt△ABC中,∠C=90°,CH⊥AB于点H,AC=3,CH=2,求BC的长.23.(6分)▱ABCD中,∠BAD的平分线交直线BC于点E,线DC于点F(1)求证:CE=CF;(2)若∠ABC=120°,FG∥CE,FG=CE,求∠BDG.24.(12分)在平面直角坐标系中,A(﹣m,0)、B(n,0),若.如图C在x轴上,BC=2,Q从O向C运动,以AQ、BQ为边作等边△AEQ、等边△FBQ.连接EF,点P为EF中点(1)求A、B两点坐标;(2)求P点运动的路径长为多少?(3)求EF的最小值.湖北省武汉市武珞路中学2014-2015学年八年级下学期期中数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)有意义,a的取值范围是()A.a≥2B.a>2C.a≥﹣2D.a>﹣2考点:二次根式有意义的条件.分析:二次根式的被开方数的非负数.解答:解:根据题意,得a+2≥0,解得,a≥﹣2;故选C点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(3分)下列计算,正确的是()A.B.C.D.考点:二次根式的加减法.分析:直接利用二次根式的加减运算法则分别化简求出即可.解答:解:A、﹣无法计算,故此选项错误;B、+=2=3=5,故此选项错误;C、3﹣=2,正确;D、2+无法计算,故此选项错误;故选:C.点评:此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.3.(3分)化简:正确的是()A.B.C.4D.考点:二次根式的乘除法.分析:直接利用二次根式的性质化简求出即可.解答:解:==.故选:D.点评:此题主要考查了二次根式的除法运算,正确化简二次根式是解题关键.4.(3分)下列各式中属于最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:C选项的被开方数中含有未开尽方的因数;B、D选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.解答:解:因为B、=;C、=2;D、=;所以,这三个选项都不是最简二次根式.故选A.点评:在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.5.(3分)a、b、c为△ABC三边,不是直角三角形的是()A.a2=c2﹣b2B.a=,b=1,c=C.∠A:∠B:∠C=3:4:5D.a=8k,b=17k,c=15k考点:勾股定理的逆定理;三角形内角和定理.分析:利用勾股定理的逆定理判断A、B,D选项;用直角三角形各角之间的关系判断C选项.解答:解:A、∵a2=c2﹣b2,∴a2+b2=c2,∴a、b、c为△ABC三边,是直角三角形,故本选项错误;B、∵b2+c2=a2,∴a、b、c为△ABC三边,是直角三角形,故本选项错误;C、∵∠A:∠B:∠C=3:4:5,∴设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,即3x+4x+5x=180°,解得,x=15°,∴5x=5×15°=75°<90°,∴a、b、c为△ABC三边,不是直角三角形,故本选项正确;D、∵a2+c2=b2,∴a、b、c为△ABC三边,是直角三角形,故本选项错误.故选C.点评:本题考查的是勾股定理的逆定理及直角三角形的性质,若已知三角形的三边判定其形状时要根据勾股定理判断;若已知三角形各角之间的关系,应根据三角形内角和定理求出最大角的度数或求出两较小角的和再进行判断.6.(3分)下列命题的逆命题是正确的是()A.若a=b,则a2=b2B.若a>0,b>0,则ab>0C.等边三角形是锐角三角形D.全等三角形的对应边相等考点:命题与定理.分析:先交换原命题的题设与结论得到其逆命题,然后分别根据平方根的定义、有理数的性质、等边三角形的判定和全等三角形的判定分别对四个逆命题的真假进行判断.解答:解:A、逆命题为若a2=b2,则a=b,此逆命题为假命题;B、逆命题为ab>0,则a>0,b>0,此逆命题为假命题;C、逆命题为锐角三角形是等边三角形,此逆命题为假命题;D、逆命题为对应边相等的三角形为全等三角形,此逆命题为真命题.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.7.(3分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2,则AB=()A.4B.C.D.考点:含30度角的直角三角形;勾股定理.分析:设BC=x,根据含30度角的直角三角形性质求出AB=2BC=2x,根据勾股定理得出方程22+x2=(2x)2,求出x即可.解答:解:设BC=x,∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2x,∵AC=2,∴由勾股定理得:AC2+BC2=AB2,22+x2=(2x)2,解得:x=,∴AB=2x=,故选C.点评:本题考查了勾股定理,含30度角的直角三角形性质的应用,解此题的关键是能得出AB=2BC,用了方程思想.8.(3分)▱ABCD中,BC=10,AC与BD交于O,AO=4,BO=7,△ABC比△DBC周长小()A.3B.4C.5D.6考点:平行四边形的性质.分析:由平行四边形的性质得出AB=CD,OA=OC=4,OB=OD=7,得出AC、BD,由三角形的周长即可得出结果.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,OA=OC=4,OB=OD=7,∴AC=8,BD=14,∴△DBC的周长﹣△ABC的周长=(BC+CD+BD)﹣(AB+BC+AC)=BD﹣AC=14﹣8=6;故选:D.点评:本题考查了平行四边形的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.(3分)下列条件能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠DB.AB∥CD,AD=BCC.AB∥CD,∠A=∠CD.AO=BO,CO=DO考点:平行四边形的判定.分析:根据平行四边形的判定定理:两组对角分别相等的四边形是平行四边形可得答案.解答:解:A、∠A=∠B,∠C=∠D不能判定四边形ABCD是平行四边形,故此选项错误;B、AB∥CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;C、AB∥CD,∠A=∠C可证出∠B=∠D,能判定四边形ABCD是平行四边形,故此选项正确;D、AO=BO,CO=DO不能判定四边形ABCD是平行四边形,故此选项错误;故选:C.点评:此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.10.(3分)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为()A.B.C.1D.考点:勾股定理;等腰三角形的性质;含30度角的直角三角形;等腰直角三角形.分析:过F点作FG∥BC.根据等腰三角形的性质和三角形内角和定理可得AF=CF,在Rt△CDF中,根据三角函数可得AF=CF=2,DF=,根据平行线分线段成比例可得比例式GF:BD=AF:AD,求得GF=4﹣2,再根据平行线分线段成比例可得比例式EF:EC=GF:BC,依此即可得到EF=﹣1.解答:解:过F点作FG∥BC.∵在△ABC中,AB=AC,AD是BC边上的中线,∴BD=CD=BC=1,∠BAD=∠CAD=∠BAC=15°,AD⊥BC,∵∠ACE=∠BAC,∴∠CAD=∠ACE=15°,∴AF=CF,∵∠ACD=(180°﹣30°)÷2=75°,∴∠DCE=75°﹣15°=60°,在Rt△CDF中,AF=CF==2,DF=CD•tan60°=,∵FG∥BC,∴GF:BD=AF:AD,即GF:1=2:(2+),解得GF=4﹣2,∴EF:EC=GF:BC,即EF:(EF+2)=(4﹣2):2,解得EF=﹣1.故选:A.点评:综合考查了等腰三角形的性质,三角形内角和定理可得,三角函数,平行线分线段成比例,以及方程思想,本题的难点是作出辅助线,寻找解题的途径.二、填空题(每小题3分,共18分)11.(3分)计算:÷=3.考点:二次根式的乘除法.分析:根据二次根式是除法法则进行计算.解答:解:原式====3.故答案是:3.点评:本题考查了二次根式的乘除法.二次根式的除法法则:÷=(a≥0,b>0).12.(3分)已知x=+1,y=﹣1,则x2﹣y2=.考点:二次根式的化简求值.分析:先分解因式,再代入比较简便.解答:解:x2﹣y2=(x+y)(x﹣y)=2×2=4.点评:注意分解因式在代数式求值中的作用.13.(3分)一木杆在离地面3米处折断,木杆顶端落在离木杆底端4米处,木杆折断之前高8米.考点:勾股定理的应用.分析:由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.解答:解:∵一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处,∴折断的部分长为=5,∴折断前高度为5+3=8(米
本文标题:【解析版】武珞路中学2014-2015年八年级下期中数学模拟试卷
链接地址:https://www.777doc.com/doc-7836600 .html