您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2016-2017学年八年级上期中数学试卷含答案解析
2016-2017学年八年级(上)期中数学考试试卷一、精心选一选:本大题共10小题,每小题2分,共20分.1.(2分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(2分)以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm3.(2分)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.4.(2分)已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为()A.4B.5C.6D.不能确定5.(2分)如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DFB.∠A=∠DC.∠B=∠CD.AB=DC6.(2分)如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CDD.CD平分∠ACB7.(2分)能把一个三角形分成两个面积相等的三角形是三角形的()A.中线B.高线C.角平分线D.以上都不对8.(2分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形9.(2分)如图,在Rt△ABC中,∠C=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是()A.3cmB.6cmC.9cmD.12cm10.(2分)如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2B.3C.4D.5二、细心填一填:本大题共6小题,每小题3分,共18分.11.若点M(﹣3,b)与点N(a,2)关于x轴对称,则a+b=.12.若正n边形的一个外角为45°,则n=.13.若ax=2,bx=3,则(ab)3x=.14.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第块去.(填序号)15.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.16.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为.三、解答题(共10小题,满分62分)17.计算:(﹣a2b)3×(ab2)2×a3b2.18.先化简,再求值:(a+b)(2a﹣b)﹣2a(a﹣b+1),其中a=,b=﹣2.19.(6分)如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.20.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.21.如图,AB=DE,AC=DF,BE=CF.求证:AB∥DE.22.如图1,已知三角形纸片ABC,AB=AC,∠A=50°,将其折叠,如图2,使点A与点B重合,折痕为ED,点E,D分别在AB,AC上,求∠DBC的大小.23.(6分)如图,在△ABC中,AB=AC,D为BC中点,DE、DF分别是∠ADB、∠ADC的平分线,若DE=2,求DF的长.24.(7分)如图,∠AOB=90°,将三角尺的直角顶点落在∠AOB的平分线OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F.证明:PE=PF.25.(9分)如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.26.(9分)如图1所示,点E、F在线段AC上,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为点E,F;DE,BF分别在线段AC的两侧,且AE=CF,AB=CD,BD与AC相交于点G.(1)求证:EG=GF;(2)若点E在F的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.(3)若点E、F分别在线段CA的延长线与反向延长线上,其余条件不变,(1)中结论是否成立?(要求:在备用图中画出图形,直接判断,不必说明理由)2016-2017学年八年级(上)期中数学考试试卷参考答案与试题解析一、精心选一选:本大题共10小题,每小题2分,共20分.1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、5+6>10,能够组成三角形;C、1+1<3,不能组成三角形;D、3+4<9,不能组成三角形.故选B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【解答】解:线段BE是△ABC的高的图是D.故选D.【点评】三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4.已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为()A.4B.5C.6D.不能确定【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等求解即可.【解答】解:∵△ABC≌△DEF,∴DE=AB=4.故选A.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的对应边上的高、中线以及对应角的平分线相等.5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DFB.∠A=∠DC.∠B=∠CD.AB=DC【考点】直角三角形全等的判定.【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选D.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.6.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CDD.CD平分∠ACB【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的判定定理得到AB是线段CD的垂直平分线,得到答案.【解答】解:∵AC=AD,BC=BD,∴AB是线段CD的垂直平分线,故选:C.【点评】本题考查的是线段垂直平分线的判定,掌握到线段的两个端点的距离相等的点在线段的垂直平分线上是解题的关键.7.能把一个三角形分成两个面积相等的三角形是三角形的()A.中线B.高线C.角平分线D.以上都不对【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的两个三角形的面积相等解答.【解答】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点评】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键.8.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【考点】等边三角形的判定;轴对称的性质.【分析】根据轴对称的性质可知:OP1=OP2=OP,∠P1OP2=60°,即可判断△P1OP2是等边三角形.【解答】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.【点评】主要考查了等边三角形的判定和轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.9.如图,在Rt△ABC中,∠C=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是()A.3cmB.6cmC.9cmD.12cm【考点】含30度角的直角三角形.【分析】先求出∠ACD=30°,然后根据30°所对的直角边等于斜边的一半解答.【解答】解:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°(同角的余角相等),∵AD=3cm,在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm.∴AB的长度是12cm.故选D.【点评】本题主要考查直角三角形30°角所对的直角边等于斜边的一半的性质.10.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2B.3C.4D.5【考点】等腰三角形的判定;坐标与图形性质.【分析】根据题意,结合图形,分两种情况讨论:①OA为等腰三角形底边;②OA为等腰三角形一条腰.【解答】解:如上图:①OA为等腰三角形底边,符合符合条件的动点P有一个;②OA为等腰三角形一条腰,符合符合条件的动点P有三个.综上所述,符合条件的点P的个数共4个.故选C.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.二、细心填一填:本大题共6小题,每小题3分,共18分.11.若点M(﹣3,b)与点N(a,2)关于x轴对称,则a+b=﹣5.【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,得出a,b的值即可.【解答】解:∵点M(﹣3,b)与点N(a,2)关于x轴对称,∴a=﹣3,b=﹣2,则a+b=﹣3﹣2=﹣5.故答案为:﹣5.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.12.若正n边形的一个外角为45°,则n=8.【考点】多边形内角与外角.【分析】根据正多边形的外角和的特征即可求出多边形的边数.【解答】解:n=360°÷45°=8.所以n的值为8.故答案为:8.【点评】本题考查多边形的外角和的特征:多边形的外角和等于360°,是基础题型.13.若ax=2,bx=3,则(ab)3x=216.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则化简进而将已知代入求出答案即可.【解答】解:∵ax=2,bx=3,∴(ab)3x=(axbx)3=(2×3)3=216.故答案为:216.【点评】此题主要考查了幂的乘方与积的乘方运算,正确掌握积的乘方运算法则是解题关键.14.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第③块去.(填序号)【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均
本文标题:2016-2017学年八年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7837300 .html