您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 湖南省郴州2016届九年级下第一次月考数学试卷含答案解析
2015-2016学年湖南省郴州九年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.关于x的方程ax2﹣3x+2=0是一元二次方程,则()A.a>0B.a≠0C.a=1D.a≥02.下列图形中,是中心对称图形的是()A.B.C.D.3.一个不透明的口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一球,得到白球”这个事件是()A.必然事件B.随机事件C.不可能事件D.以上都不正确4.下列图象中是反比例函数y=﹣图象的是()A.B.C.D.5.若△ABC∽△DEF,△ABC与△DEF的相似比为2:3,则S△ABC:S△DEF为()A.2:3B.4:9C.:D.3:26.如图所示的几何体的主视图是()A.B.C.D.7.在下列四个函数中,y随x的增大而减小的函数是()A.y=3xB.y=(x<0)C.y=5x+2D.y=x2(x>0)8.关于x的二次函数y=﹣(x﹣1)2+2,下列说法正确的是()A.图象的开口向上B.图象与y轴的交点坐标为(0,2)C.当x>1时,y随x的增大而减小D.图象的顶点坐标是(﹣1,2)9.如图,PA、PB是⊙O的切线,AC是⊙O直径,∠c=55°,则∠APB等于()A.55°B.60°C.65°D.70°10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.二、填空题(每小题4分,共24分)11.已知关于x一元二次方程ax2+bx+c=0有一个根为1,则a+b+c=.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是.13.将抛物线y=2x2先沿x轴方向向左平移2个单位,再沿y轴方向向下平移3个单位,所得抛物线的解析式是.14.一元二次方程x2﹣5x+3=0的两根为m,n;则m+n的值为.15.观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.16.如图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,A、B、P是⊙O上的点,则tan∠APB=.三、解答题(每小题6分,共18分)17.解方程:x2﹣3x+2=0.18.如图,△ABC与△ADE中,∠C=∠E,∠1=∠2;(1)证明:△ABC∽△ADE.(2)请你再添加一个条件,使△ABC≌△ADE.你补充的条件为:.19.如图,在边长为1的正方形组成的网格中,△△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到A1OB1.(1)画出旋转后的图形;(2)点A1的坐标为;(3)求线段OB在旋转过程中所扫过的图形面积(写过程).四、解答题(每小题7分,共21分)20.我校开展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督查.(1)请补全如下的树状图;(2)求恰好选中两名男学生的概率.21.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?22.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.五、解答题(每小题9分,共27分)23.如图,一次函数y=kx+b的图象与反比例函y=的图象交于点A﹙﹣2,﹣5﹚C﹙5,n﹚,交y轴于点B,交x轴于点D.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)连接OA,OC.求△AOC的面积.(3)直接写kx+b﹣>0的解集.24.如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.25.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标);(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.2015-2016学年湖南省郴州十六中九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.关于x的方程ax2﹣3x+2=0是一元二次方程,则()A.a>0B.a≠0C.a=1D.a≥0【考点】一元二次方程的定义.【分析】因为一元二次方程的一般形式是ax2+bx+c=0(a,b,c是常数,且a≠0),依据一般形式即可进行判断.【解答】解:要使ax2﹣3x+2=0是一元二次方程,必须保证a≠0.故选B.2.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.3.一个不透明的口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一球,得到白球”这个事件是()A.必然事件B.随机事件C.不可能事件D.以上都不正确【考点】随机事件.【分析】根据随机事件是不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【解答】解:一个不透明的口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一球,得到白球”这个事件是随机事件,故选:B.4.下列图象中是反比例函数y=﹣图象的是()A.B.C.D.【考点】反比例函数的图象.【分析】利用反比例函数图象是双曲线进而判断得出即可.【解答】解:反比例函数y=﹣图象的是C.故选:C.5.若△ABC∽△DEF,△ABC与△DEF的相似比为2:3,则S△ABC:S△DEF为()A.2:3B.4:9C.:D.3:2【考点】相似三角形的性质.【分析】因为两相似三角形的面积比等于相似比的平方,所以.【解答】解:因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,所以S△ABC:S△DEF=()2=,故选B.6.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.7.在下列四个函数中,y随x的增大而减小的函数是()A.y=3xB.y=(x<0)C.y=5x+2D.y=x2(x>0)【考点】反比例函数的性质.【分析】根据反比例函数,二次函数以及一次函数的性质,即可解答本题.【解答】解:A、3>0,增函数,错误;B、2<0,减函数,正确;C、5>0,增函数,错误;D、对称轴为y轴,在对称轴的右侧,y随x的增大而增大,错误.故选B.8.关于x的二次函数y=﹣(x﹣1)2+2,下列说法正确的是()A.图象的开口向上B.图象与y轴的交点坐标为(0,2)C.当x>1时,y随x的增大而减小D.图象的顶点坐标是(﹣1,2)【考点】二次函数的性质.【分析】分别根据抛物线的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各选项进行逐一分析.【解答】解:A、∵二次函数y=﹣(x﹣1)2+2中,a=﹣1<0,∴此抛物线开口向下,故本选项错误;B、∵当x=0时,y=﹣(0﹣1)2+2=1,∴图象与y轴的交点坐标为(0,1),故本选项错误;C、∵抛物线的对称轴x=1,且抛物线开口向下,∴当x>1时,y随x的增大而减小,故本选项正确;D、抛物线的顶点坐标为(1,2),故本选项错误.故选C.9.如图,PA、PB是⊙O的切线,AC是⊙O直径,∠c=55°,则∠APB等于()A.55°B.60°C.65°D.70°【考点】切线的性质.【分析】连接OB,利用切线的性质,以及圆周角定理得到三个角为直角,根据OC=OB,利用等边对等角及外角性质求出∠AOB度数,即可求出∠APB度数.【解答】解:连接OB,∵PA、PB是⊙O的切线,AC是⊙O直径,∴∠OAP=∠OBP=∠ABC=90°,∵∠C=55°,OC=OB,∴∠OBC=55°,∴∠AOB=110°,则在四边形AOBP中,∠APB=70°.故选D.10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意,分两种情况:(1)当点P在AB上移动时,点D到直线PA的距离不变,恒为4;(2)当点P在BC上移动时,根据相似三角形判定的方法,判断出△PAB∽△ADE,即可判断出y=(3<x≤5),据此判断出y关于x的函数大致图象是哪个即可.【解答】解:(1)当点P在AB上移动时,点D到直线PA的距离为:y=DA=BC=4(0≤x≤3).(2)如图1,当点P在BC上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠DAE,在△PAB和△ADE中,∴△PAB∽△ADE,∴,∴,∴y=(3<x≤5).综上,可得y关于x的函数大致图象是:.故选:D.二、填空题(每小题4分,共24分)11.已知关于x一元二次方程ax2+bx+c=0有一个根为1,则a+b+c=0.【考点】一元二次方程的解.【分析】根据题意,一元二次方程ax2+bx+c=0有一个根为1,即x=1时,ax2+bx+c=0成立,将x=1代入可得答案.【解答】解:根据题意,一元二次方程ax2+bx+c=0有一个根为1,即x=1时,ax2+bx+c=0成立,即a+b+c=0,故答案为0.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是30°.【考点】旋转的性质.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣15°=30°,故答案是:30°.13.将抛物线y=2x2先沿x轴方向向左平移2个单位,再沿y轴方向向下平移3个单位,所得抛物线的解析式是y=2x2+8x+5.【考点】二次函数图象与几何变换.【分析】变化规律:左加右减,上加下减.【解答】解:按照“左加右减,上加下减”的规律,向左平移2个单位,将抛物线y=2x2先变为y=2(x+2)2,再沿y轴方向向下平移3个单位抛物线y=2(x+2)2,即变为:y=2(x+2)2﹣3.故所得抛物线的解析式是:y=2x2+8x+5.14.一元二次方程x2﹣5x+3=0的两根为m,n;则m+n的值为5.【考点】根与系数的关系.【分析】直接根据根与系数的关系求解.【解答】解:∵一元二次方程x2﹣5x+3=0的两根为m,n,∴m+n=5.故答案为5.15.观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.【考点】规律型:数字的变化类.【分析】由分子1,2,3,4,5,…即可得出第10个数的分子为10;分母为3,5,7,9,11,…即可得出第10个数的分母为:1+2
本文标题:湖南省郴州2016届九年级下第一次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7839103 .html