您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 四川省内江市2015-2016年八年级下期末数学试卷含答案解析
2015-2016学年四川省内江市八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A、B、C、D四个选项中,只有一项是符合题目要求的.)1.下列式子是分式的是()A.B.C.D.2.某种病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣7米B.1.2×10﹣8米C.1.2×10﹣9米D.12×10﹣8米3.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠1B.x≤2且x≠1C.x≠1D.x≤﹣24.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)5.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数C.平均数D.极差6.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等7.八年级学生去距学校11km的科技馆参观,一部分学生骑自行车,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度,设骑车学生的速度为xkm/h,则所列方程正确的是()A.B.C.D.8.如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.7B.10C.11D.129.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12D.2410.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.11.如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.其中,正确的有()个.A.1B.2C.3D.412.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=10,则FD的长为()A.B.4C.D.5二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案直接填在题中横线上)13.=.14.若,则分式的值是.15.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为.16.如图,点A(a,1)、B(﹣1,b)都在函数(x<0)的图象上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是.三、解答题(本大题共6小题,共56分.解答应写出必要的文字说明或演算步骤.)17.(1)化简:.(2)先化简:,再从﹣2<a<3的范围内选取一个你最喜欢的整数代入求值.18.如图,在平行四边形ABCD中,AE⊥BD于E,CF⊥BD于F,连结AF,CE.求证:四边形AECF是平行四边形.19.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85高中部8510020.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中购进甲种粽子共用300元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?21.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.22.已知反比例函数y=的图象与一次函数y=k2x+m的图象交于A(a,1)、B(,﹣3)两点,连结AO.(1)求反比例函数和一次函数的表达式;(2)根据图象直接写出k2x+m﹣<0的x的取值范围;(3)设点C在y轴上,且与点A、O构成等腰三角形,请直接写出点C的坐标.2015-2016学年四川省内江市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A、B、C、D四个选项中,只有一项是符合题目要求的.)1.下列式子是分式的是()A.B.C.D.【考点】分式的定义.【分析】根据分母中含有字母的式子是分式,可得答案.【解答】解:是分式,故选:B.2.某种病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣7米B.1.2×10﹣8米C.1.2×10﹣9米D.12×10﹣8米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7,故选:A.3.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠1B.x≤2且x≠1C.x≠1D.x≤﹣2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x﹣1≠0,解得x≥﹣2且x≠1.故选:A.4.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)【考点】坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.【分析】先利用平移中点的变化规律求出点A′的坐标,再根据关于y轴对称的点的坐标特征即可求解.【解答】解:∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2).故选:C.5.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数C.平均数D.极差【考点】统计量的选择.【分析】由于有13名同学参加百米竞赛,要取前6名参加决赛,故应考虑中位数的大小.【解答】解:共有13名学生参加竞赛,取前6名,所以小梅需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小梅知道这组数据的中位数,才能知道自己是否进入决赛.故选:A.6.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.7.八年级学生去距学校11km的科技馆参观,一部分学生骑自行车,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度,设骑车学生的速度为xkm/h,则所列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】表示出汽车的速度,然后根据汽车行驶的时间等于骑车行驶的时间减去时间差列方程即可.【解答】解:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,=+.故选C.8.如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.7B.10C.11D.12【考点】平行四边形的性质;线段垂直平分线的性质.【分析】根据线段垂直平分线的性质可得AE=EC,再根据平行四边形的性质可得DC=AB=4,AD=BC=6,进而可以算出△CDE的周长.【解答】解:∵AC的垂直平分线交AD于E,∴AE=EC,∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∴△CDE的周长为:EC+CD+ED=AD+CD=6+4=10,故选:B.9.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12D.24【考点】菱形的性质.【分析】设对角线相交于点O,根据菱形的对角线互相垂直平分求出AO、BO,再利用勾股定理列式求出AB,然后根据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB•DH=AC•BD,即5DH=×8×6,解得DH=.故选A.10.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.【解答】解:当k>0时,反比例函数图象经过一三象限;一次函数图象经过第一、二、三象限,故A、C错误;当k<0时,反比例函数经过第二、四象限;一次函数经过第二、三、四象限,故B错误,D正确;故选:D.11.如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.其中,正确的有()个.A.1B.2C.3D.4【考点】菱形的判定;平行四边形的判定;矩形的判定.【分析】先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.【解答】解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,选项①正确;若∠BAC=90°,∴平行四边形AEDF为矩形,选项②正确;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四边形AEDF为菱形,选项③正确;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,选项④正确,则其中正确的个数有4个.故选D.12.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=10,则FD的长为()A.B.4C.D.5【考点】翻折变换(折叠问题);矩形的性质.【分析】根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.【解答】
本文标题:四川省内江市2015-2016年八年级下期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7840566 .html