您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 宜春市宜春七中九年级下《二次函数》检测题及答案解析
第二十六章二次函数检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2013·兰州中考)二次函数的图象的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)2.(2013·哈尔滨中考)把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.B.C.D.3.(2013·吉林中考)如图,在平面直角坐标系中,抛物线所表示的函数解析式为,则下列结论正确的是()A.B.<0,>0C.<0,<0D.>0,<04.(2013·河南中考)在二次函数的图象上,若随的增大而增大,则的取值范围是()A.1B.1C.-1D.-15.(2013·烟台中考)如图是二次函数图象的一部分,其对称轴为,且过点(-3,0),下列说法:①<0;②;③;④若(-5,),(,)是抛物线上两点,则.其中正确的是()A.①②B.②③C.①②④D.②③④第5题图第6题图6.(2013·长沙中考)二次函数的图象如图所示,则下列关系式错误的是()A.B.C.D.7.(2013·陕西中考)已知两点(-5,),(3,)均在抛物线上,点是该抛物线的顶点.若,则的取值范围是()A.>-5B.>-1C.-5<<-1D.-2<<38.二次函数无论取何值,其图象的顶点都在()A.直线上B.直线上C.x轴上D.y轴上9.已知二次函数,当取,(≠)时,函数值相等,则当取时,函数值为()A.B.C.D.c10.已知二次函数,当取任意实数时,都有,则的取值范围是()A.B.C.D.第3题图二、填空题(每小题3分,共24分)11.(2013·成都中考)在平面直角坐标系中,直线为常数)与抛物线交于两点,且点在轴左侧,点的坐标为(0,-4),连接,.有以下说法:①;②当时,的值随的增大而增大;③当-时,;④△面积的最小值为4,其中正确的是.(写出所有正确说法的序号)12.把抛物线的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是则.13.已知抛物线的顶点为则,.14.如果函数是二次函数,那么k的值一定是.15.将二次函数化为的形式,则.16.二次函数的图象是由函数的图象先向(左、右)平移个单位长度,再向(上、下)平移个单位长度得到的.17.如图,已知抛物线经过点(0,-3),请你确定一个的值,使该抛物线与轴的一个交点在(1,0)和(3,0)之间,你所确定的的值是.18.如图所示,已知二次函数的图象经过(-1,0)和(0,-1)两点,则化简代数式=.三、解答题(共46分)19.(6分)已知抛物线的顶点为,与y轴的交点为求抛物线的解析式.20.(6分)已知抛物线的解析式为(1)求证:此抛物线与x轴必有两个不同的交点;(2)若此抛物线与直线的一个交点在y轴上,求m的值.21.(8分)(2013·重庆中考)如图,对称轴为直线的抛物线与轴相交于,两点,其中点的坐标为(3,0).第21题图(1)求点的坐标.第18题图第17题图(2)已知,为抛物线与轴的交点.①若点在抛物线上,且4,求点的坐标;②设点是线段上的动点,作轴交抛物线于点,求线段长度的最大值.22.(8分)(2013·哈尔滨中考)某水渠的横截面呈抛物线形,水面的宽为(单位:米),现以所在直线为轴,以抛物线的对称轴为轴建立如图所示的平面直角坐标系,设坐标原点为.已知米,设抛物线解析式为.第22题图(1)求的值;(2)点(-1,)是抛物线上一点,点关于原点的对称点为点,连接,,,求△的面积.23.(8分)已知抛物线与轴有两个不同的交点.(1)求的取值范围;(2)抛物线与轴的两交点间的距离为2,求的值.24.(10分)心理学家发现,在一定的时间范围内,学生对概念的接受能力与提出概念所用的时间(单位:分钟)之间满足函数关系式的值越大,表示接受能力越强.(1)若用10分钟提出概念,学生的接受能力的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.第二十六章二次函数检测题参考答案1.A解析:因为的图象的顶点坐标为,所以的图象的顶点坐标为(1,3).2.D解析:把抛物线向下平移2个单位,所得到的抛物线是,再向右平移1个单位,所得到的抛物线是.点拨:抛物线的平移规律是左加右减,上加下减.3.A解析:∵图中抛物线所表示的函数解析式为,∴这条抛物线的顶点坐标为.观察函数的图象发现它的顶点在第一象限,∴.4.A解析:把配方,得.∵-10,∴二次函数图象的开口向下.又图象的对称轴是直线,∴当1时,随的增大而增大.5.C解析:本题考查了二次函数的图象和性质.由图象开口向上,对称轴在轴的左侧,与轴的交点在轴的下方,得∴故①正确.∵抛物线的对称轴是直线,∴-=-1,即,∴,故②正确.∵抛物线上的点(-3,0)关于直线对称的点是(1,0),当时,,根据抛物线的对称性,知当时,随的增大而增大,∴当x=2时,y=a+b+c0,故③错误.抛物线上的点(-5,)关于直线x=-1对称的点的坐标是(3,),∵3,∴.故④正确.故正确的说法是①②④.6.D解析:∵抛物线开口向上,∴a>0,∴A项正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴B项正确;∵抛物线与x轴有两个交点,∴>0,∴C项正确;∵抛物线的对称轴是直线x=1,顶点在x轴下方,∴当x=1时,y=a+b+c<0,∴D项错误.7.B解析:由>≥,知抛物线的开口只能向上.若点A,B在抛物线对称轴的左侧,则>3;若点B,C重合,则=3;若点A在点C的左侧,点B在点C的右侧且点B比点A低,如图,(-5,0)和(3,0)两点连线的中点为(-1,0),所以抛物线的顶点C应在直线x的右边,从而有-1<<3.综上知>-1.8.B解析:顶点为当时,故图象顶点在直线上.9.D解析:由题意可知所以所以当10.B解析:因为当取任意实数时,都有,又二次函数的图象开口向上,所以图象与轴没有交点,所以11.③④解析:本题综合考查了二次函数与方程和方程组的综合应用.设点A的坐标为(,),点B的坐标为().不妨设,解方程组得∴(,-),B(3,1).此时,,∴.而=16,∴≠,∴结论①错误.当=时,求出A(-1,-),B(6,10),此时()(2)=16.由①时,()()=16.比较两个结果发现的值相等.∴结论②错误.当-时,解方程组得出A(-2,2),B(,-1),求出12,2,6,∴,即结论③正确.把方程组消去y得方程,∴,.∵=·||OP·||=×4×||=2=2,∴当时,有最小值4,即结论④正确.12.11解析:把它向左平移3个单位长度,再向上平移2个单位长度得即∴∴∴13.-1解析:故14.0解析:根据二次函数的定义,得,解得.又∵,∴.∴当时,这个函数是二次函数.15.解析:16.左3下2解析:抛物线是由先向左平移3个单位长度,再向下平移2个单位长度得到的.17.(答案不唯一)解析:由题意可知要想抛物线与轴的一个交点在(1,0)和(3,0)之间,只需异号即可,所以18.解析:把(-1,0)和(0,-1)两点代入中,得,,∴.由图象可知,抛物线对称轴,且,∴,∴.∴=,故本题答案为.19.解:∵抛物线的顶点为∴设其解析式为①将代入①得∴故所求抛物线的解析式为即20.(1)证明:∵∴∴方程有两个不相等的实数根.∴抛物线与轴必有两个不同的交点.(2)解:令则解得21.分析:本题主要考查了与二次函数图象和性质相关的综合应用.(1)根据点A和点B关于直线对称,则点B的横坐标点A的横坐标.(2)用待定系数法确定抛物线的解析式.①,计算△POC的面积时把OC作为底,点P到OC的距离就是△POC的底OC上的高;②∵QD⊥x轴,∴线段QD的长度等于Q、D两点纵坐标差的绝对值.解:(1)∵点A(-3,0)与点B关于直线x=-1对称,∴点B的坐标为(1,0).(2)∵,∴.∵抛物线过点(-3,0),且对称轴为直线,∴∴,且点C的坐标为(0,-3).①设点P的坐标为.由题意得=×1×3=,∴6.当时,有×3×x=6,∴x=4,∴y=+2×4-3=21.当时,有×3×()=6,∴,∴+2×(-4)-3=5.∴点的坐标为(4,21)或(-4,5).②设直线AC的解析式为,则解得∴.如图,设点的坐标为,-3≤x≤0.则有QD=--3-()+.∵-3≤-≤0,∴当时,有最大值.∴线段长度的最大值为.点拨:(1)确定抛物线的解析式时也可设为两根式,即的形式.(2)在平面直角坐标系中求三角形的面积时,一般要将落在坐标轴上的一边作为底.22.分析:(1)求出点A或点B的坐标,将其代入,即可求出a的值;(2)把点代入(1)中所求的抛物线的解析式中,求出点C的坐标,再根据点C和点D关于原点O对称,求出点D的坐标,然后利用求△BCD的面积.解:(1)∵,由抛物线的对称性可知,∴(4,0).∴0=16a-4.∴a.(2)如图所示,过点C作于点E,过点D作于点F.∵a=,∴-4.当-1时,m=×-4=-,∴C(-1,-).∵点C关于原点O的对称点为点D,∴D(1,).∴.∴×4×+×4×=15.∴△BCD的面积为15平方米.点拨:在直角坐标系中求图形的面积,常利用“割补法”将其转化为有一边在坐标轴上的图形面积的和或差求解.23.解:(1)∵抛物线与轴有两个不同的交点,∴>0,即解得c<.(2)设抛物线与轴的两交点的横坐标为,∵两交点间的距离为2,∴.由题意,得,解得,∴,.24.解:(1)当时,.(2)当时,,∴用8分钟与用10分钟相比,学生的接受能力减弱了;当时,,∴用15分钟与用10分钟相比,学生的接受能力增强了.
本文标题:宜春市宜春七中九年级下《二次函数》检测题及答案解析
链接地址:https://www.777doc.com/doc-7841268 .html