您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 数学七年级下华东师大版6.3实践与探索同步练习2
6.3实践与探索A卷:基础题一、选择题1.为解决老百姓看病难的问题,卫生部门决定大幅度降低药价,某种药品降价40%后的价格为a元,则降价前此药品的价格为()A.52a元B.53a元C.40%a元D.60%a元2.某个体商贩在一次买卖中同时卖出两件上衣,每件都以135元的价格出售,若按成本计算其中的一件赢利25%,另一件亏本25%,则在这次买卖中,商贩()A.赚了9元B.赔了18元C.赚了18元D.不赚不赔3.随着新农村建设的进一步加快,湖州市农村居民人均纯收入迅速增长,据统计,2005年该市农村居民人均纯收入比上一年增长14.2%,若2004年湖州市农村居民人均纯收入为a元,则2005年该市农村居民人均纯收入可表示为()A.14.2a元B.1.42a元C.1.142a元D.0.142a元二、填空题4.小丁家的墙上钉着一个用彩绳围成的三角形(如图6-3-1中实线所示),小丁通过移动钉子,把它变成一个等边三角形(如图中的虚线所示),则等边三角形的边长为________.5.某工厂为增加效益,需裁员,该工厂有A,B,C三个车间,分别有工人84人,56人,60人.如果每个车间按相同比例裁员,使这个工厂留下150人,则C车间留下____人.6.爸爸为小月存了一个3年期的教育储蓄(3年期的年利率为2.7%),3年后能取5405元,他开始存了________元.三、解答题7.将一个长、宽、高分别为15cm,12cm,8cm的长方体钢坯锻造成一个底面边长为12cm的正方形的长方体钢坯,试问是锻造前长方体钢坯表面积大,还是锻造后的长方体钢坯表面积大?请计算比较.8.某种纯平彩电先按进价提高40%标出销售价,然后广告宣传将以80%的优惠价出售,结果每台彩电赚了300元,那么经营这种彩电的利润率为多少?9.泰安市最近新建甲,乙,丙三个水厂,这三个水厂的月供水量共计11.8万立方米,其中乙水厂的月供水量是甲水厂月供水量的3倍,丙水厂的月供水量比甲水厂月供水量的一半多1万立方米.求这三个水厂的月供水量各是多少立方米?10.一项工程,甲独做7.5小时完成,乙独做5小时完成,若两人合作1小时,剩下的由乙独做,问:(1)乙还需几小时完成?(2)若此项工程共得报酬600元,那么按工作量怎样分配?四、思考题11.用两根等长的铁丝,分别绕成一个正方形和一个圆.已知正方形的边长比圆的半径长2(-2)米,通过计算说明谁的面积大,并求这两根等长的铁丝的长度.B卷:提高题一、七彩题1.(一题多解题)如图是两个圆柱形的容器,它们的直径分别为4cm和8cm,高分别为42cm和10cm,先在第二个容器中倒满水,然后将其倒入第一个容器中,问:倒完后,第一个容器中的水面离瓶口有多远?2.(一题多变题)某商品按标价的九折出售,为促销,在此基础上再让利100元,仍能获利7.5%,若该商品的进价为2000元,则该商品的标价是多少元?(1)一变:某商品按标价的九折出售,为促销,在此基础上再让利100元,仍能获利7.5%,若该商品的标价为2500元,那么该商品的进价是多少元?(2)二变:某商品在打折的基础上再让利100元出售,仍获利7.5%,若该商品的标价为2500元,进价为2000元,问该商品打了几折?(3)三变:某商品的进价是2000元,标价为2500元,商店要求以利润不低于5%且不高于20%的售价打折出售,该商品可在什么范围内打折出售?二、知识交叉题3.(科内交叉题)小英和小倩站在正方形的对角A,C两点处,小英以2米/秒的速度走向点D处,途中位置记为P,小倩以3米/秒的速度走向点B处,途中位置记为Q,假设两人同时出发,已知正方形的边长为8米,E在AB上,AE=6米,记三角形AEP的面积为S1平方米,三角形BEQ的面积为S2平方米,如图所示.(1)她们出发后几秒时S1=S2;(2)当S1+S2=15时,小倩距离点B处还有多远?三、实际应用题4.芜湖供电公司分时电价执行时段分为平,谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时,平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段用电价在原销售电价基础上每千瓦时下浮0.25元.小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明家该月支付的平段,谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?四、经典中考题5.(2008,新疆,5分)古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm(如图6-3-4所示),现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()A.22(6010)(6010)68xB.228(60)606xA.2(60+10)·6=2(60+x)·8D.2(60-)·8=2(60+x)·66.(2008,南宁,10分)小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进(如图6-3-5所示),已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A,B两地间的路程.C卷:课标新型题一、开放题1.(条件结论全开放题)甲,乙两人做一广告牌,甲单独完成需4元,乙单元完成需6天,根据以上背景,编写一道应用题.(要求:至少提出三个问题,并给予解答)二、图表信息题2.(表格信息题)下表为装运甲,乙,丙三种蔬菜的质量,某汽车公司计划装运甲,乙,丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只能装一种蔬菜).若用8辆汽车装运乙,丙两种蔬菜11吨到A地销售,问装运乙,丙两种蔬菜的汽车各需多少辆?甲乙丙每辆汽车能装载的质量(吨)211.5参考答案A卷一、1.B点拨:降价前此药品的价格为x元,则(1-40%)x=a,解得x=53a,故选B.2.B点拨:135÷(1+25%)=108,135÷(1-25%)=180.3.C点拨:设2005年人均纯收入为x元,则xaa×100%=14.2%,解得x=1.142a,故选C.二、4.6点拨:设等边三角形的边长为x,则3x=5+6+7,解得x=6.5.45点拨:设C车间留下x人,则15060845660x解得x=45.6.5000点拨:设他开始存了x元,x(1+2.7%×3)=5405,解得x=5000.三、7.解:设锻造后长方体的高度为xcm,根据题意,得15×12×8=12×12·x,解得x=10.S锻造前表面积=2×(15×12+15×8+12×8)=792(cm2).S锻造后表面积=2×(12×12+12×10+12×10)=768(cm2),所以792768,即锻造前长方体表面积比锻造后长方体的表面积大.点拨:先利用体积不变求出锻造后的长方体的高,再分别计算锻造前后各自的表面积并进行比较.8.解:设彩电进价为每台x元,根据题意,得x(1+40%)×80%-x=300,解得x=2500,所以,商品的利润率为3002500×100%=12%.答:经营这种彩电的利润率是12%.点拨:此题属于利润问题,易用的等量关系为:利润=售价-进价,利润率=(利润÷进价)×100%.9.解:设甲水厂的月供水量为x万立方米,则乙水厂的月供水量为3x万立方米,丙水厂的月供水量为(12x+1)万立方米,根据题意,得x+3x+12x+1=11.8,解得x=2.4,则3x=7.2,12x+1=2.2.答:甲水厂的月供水量为2.4万立方米,乙水厂的月供水量为7.2万立方米,丙水厂的月供水量为2.2万立方米.点拨:若一个问题有多个未知量时,一般设一个未知数为x,则用含x的代数式分别表示出其他的未知量,再根据等量关系列方程.注意本题中的单位为“万立方米”而不是“立方米”.10.解:(1)设乙还需x小时完成,根据题意,得(17.5+15)×1=1-15x,解得x=313.答:乙还需313小时完成.(2)此时甲的工作量是1×17.5=215,乙的工作量1-215=1315,即甲、乙工作量之比是2:13,故甲获得报酬是2213×600=80(元),乙获得报酬是600-80=520(元).答:按工作量甲获得报酬为80元,乙获得报酬为520元.点拨:工程问题的解决应注意几个问题:一是在总工作量未知的前提下往往把它看成是1;二是可画出工程分析图帮助理解题意;三是最好先求出工作效率,然后根据关系式:工作量=工作效率×工作时间去解.四、11.解:设圆的半径为r米,则正方形的边长为[r+2(-2)]米,根据题意,得2r=4(r+2-4).解得r=4.所以,铁丝的长度为2r=8.所以圆的面积是16平方米,正方形的面积为42平方米.因为164·=42,所以圆的面积大.答:圆的面积大,铁丝的长度为8米.点拨:本题的相等关系:圆的周长=正方形的周长.B卷一、1.解法一:设第一个容器内水的高度为xcm,根据题意得,·22×x=·42·10,解得x=40,所以42-40=2(cm).答:水面离瓶口2cm.解法二:设第一个容器内水面离瓶口ycm.根据题意得·(42-y)·22=·42·10,解得y=2.答:水面离瓶口2cm.点拨:解法一是间接设未知数法,解法二是直接设未知数法,同学们要认真体会这两种设未知数的方法.拓展:解决此类型题目,(1)要记住一些常见的物体的面积,周长,体积的计算公式.抓住不变量建立方程(一是等积变形,抓住体积不变列方程;二是等长变形,抓住周长(或物体的总长度)不变列方程).(2)常见的另外几种同类关系:①不同浓度的液体混合,抓住混合前后的溶质不变建立方程;②图形的拼接、割补、平移、旋转等类型的应用题,应抓住图形变化前后的面积不变列方程.(3)应掌握“变中找不变”,“不变中找变”的数学思想方法.2.分析:依据售价-进价=利润这一等量关系列方程求解.解:设该商品的标价为x元,根据题意,得90%·x-100-2000=2000×7.5%,解得x=2500.答:该商品的标价是2500元.(1)设该商品的进价为x元,根据题意,得2500×90%-100-x=7.5%·x,解得x=2000.答:该商品的进价为2000元.(2)设该商品打了x折,根据题意,得2500×10x-100-2000=2000×7.5%,解得x=9.答:该商品打九折出售.(2)设该商品打x折出售能获利5%,根据题意,得2500×10x-2000=2000×5%,解得x=8.4.设该商品打y折出售能获利20%,根据题意,得2500×10x-2000=2000×20%,解得y=9.6.答:可在8.4~9.6折范围内打折出售.点拨:本题通过不断改变题目中的已知量和未知数,加深了同学们对打折销售问题中的基本量及它们之间关系式的理解.二、3.分析:将她们行走的路程转化为图形中三角形的边长,求得三角形的面积,再利用S1=S2,S1+S2=15分别列方程求解.解:(1)设她们出发x秒时S1=S2,则小英x秒走的路程为2x米,即AP=2x,小倩x秒走的路程为3x米,即CQ=3x,则BQ=BC-CQ=8-3x.根据题意,得12×2x×6=12(8-6)×(8-3x),解得x=89.答:她们出发89秒时S1=S2.(2)设她们出发y秒时S1+S2=15,则S1=12×2y×6=6y,S2=12×2(8-3y)=8-3y.所以S1+S2=6y+8-3y=15,解得y=73.即她们出发73秒时,S1+S2=15,因此小倩距离点B处还有8-3×73=1(米).答:小倩距离点B处还有1米.点拨:这是行程问题与图形问题相结合的一道题,设她们出发的时间为x秒,将她们行走的路程分别用含x的代数式表示出来,将计算S△AEP,S△BEQ时用到的未知线段也表示出来,然后列方程求解,解(2)时
本文标题:数学七年级下华东师大版6.3实践与探索同步练习2
链接地址:https://www.777doc.com/doc-7850643 .html