您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017-2018学年山西省太原市八年级(下)期中数学试卷
第1页(共16页)2017-2018学年山西省太原市八年级(下)期中数学试卷一、选择题(本大题含10个小题,每小题3分,共30分)在下列每小题给出的四个选项中,只有一个符合要求,请选出并填入下表相应位置1.(3分)已知a,b均为实数,且a﹣1>b﹣1,下列不等式中一定成立的是()A.a<bB.3a<3bC.﹣a>﹣bD.a﹣2>b﹣22.(3分)山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是()A.B.C.D.3.(3分)如图是两个关于x的一元一次不等式的解集在同一数轴上的表示,由它们组成的不等式组的解集是()A.x>﹣1B.x>2C.x≥2D.﹣1<x≤24.(3分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣4),C(4,﹣1).将△ABC平移得到△A1B1C1,若点A的对应点A1的坐标为(﹣2,3),则△ABC平移的方式可以为()A.向左3个单位,向上5个单位B.向左5个单位,向上3个单位C.向右3个单位,向下5个单位D.向右5个单位,向下3个单位5.(3分)解不等式𝑥+23>1−𝑥−32时,去分母后结果正确的为()A.2(x+2)>1﹣3(x﹣3)B.2x+4>6﹣3x﹣9C.2x+4>6﹣3x+3D.2(x+2)>6﹣3(x﹣3)6.(3分)如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD第2页(共16页)平分∠ABC,DE∥AB.图中的等腰三角形共有()A.3个B.4个C.5个D.6个7.(3分)如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26B.20C.15D.138.(3分)小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1800B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1.8D.90x+210(15﹣x)≤1.89.(3分)如图,直线y=ax+b与x轴交于点A(7,0),与直线y=kx交于点B(2,4),则不等式kx≤ax+b的解集为()A.x≤2B.x≥2C.0<x≤2D.2≤x≤610.(3分)如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在第3页(共16页)BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是()A.AD=BDB.AC∥BDC.DF=EFD.∠CBD=∠E二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上11.(2分)太原某座桥桥头的限重标志如图,其中的“55”表示该桥梁限制载重后总质量超过55t的车辆通过桥梁.设一辆自重10t的卡车,其载重的质量为xt,若它要通过此座桥,则x应满足的关系为(用含x的不等式表示).12.(2分)如图,将△ABC绕点A顺时针旋转60°得到△AED,若∠EAD=30°,则∠CAE的度数为.13.(2分)不等式组{3𝑥−3>55−12𝑥≥3的整数解为.14.(2分)如图,在Rt△ABC中,∠C=90°,∠A=30°,点D,点E分别在边AC,AB上,且DE垂直平分AB.若AD=2,则CD的长为.15.(2分)如图,△ABC是边长为24的等边三角形,△CDE是等腰三角形,其中DC=DE=10,∠CDE=120°,点E在BC边上,点F是BE的中点,连接AD、DF、AF,则AF第4页(共16页)的长为.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)解不等式:2x+1≤3(3﹣x)17.(6分)解不等式组{3𝑥+2<4(𝑥+1)𝑥3≥𝑥−32−1,并将其解集表示在如图所示的数轴上.18.(6分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(1,﹣4),B(5,﹣4),C(4,﹣1).(1)将△ABC经过平移得到△A1B1C1,若点C的应点C1的坐标为(2,5),则点A,B的对应点A1,B1的坐标分别为;(2)在如图的坐标系中画出△A1B1C1,并画出与△A1B1C1关于原点O成中心对称的△A2B2C2.19.(6分)近年来,随着我国国民经济的飞速发展,我国物流业的市场需求持续扩大,某物流公司承接A、B两种货物的运输业务,已知A种货物运费单价为80元/吨,B种货物运费单价为50元/吨.该物流公司预计4月份运输这两种货物共300吨,且当月运送这两种货物收入的运费总额不低于19800元,求该物流公司4月份至少要承接运输A种货第5页(共16页)物多少吨?20.(6分)如图,在△ABC中,AB=AC,AD是BC边上的中线,延长CB至点E,延长BC至点F,使BE=CF,连接AE、AF.求证:AD平分∠EAF.21.(9分)某超市店庆期间开展了促销活动,出售A,B两种商品,A种商品的标价为60元/件,B种商品的标价为40元/件,活动方案有如下两种,顾客购买商品时只能选择其中的一种方案:AB方案一按标价的“七折”优惠按标价的“八折”优惠方案二若所购商品达到或超过35件(不同商品可累计),均按标价的“七五折”优惠若某单位购买A种商品x件(x>15),购买B种商品的件数比A种商品件数多10件,求该单位选择哪种方案才能获得更多优惠?22.(10分)如图1,已知射线AP是∠MAN的角平分线,点B为射线AP上的一点且AB=10,过点B分别作BC⊥AM于点C,作BD⊥AN于点D,BC=6.(1)在图1中连接CD交AB于点O.求证:AB垂直平分CD;(2)从A,B两题中任选一题作答,我选择题A.将图1中的△ABC沿射线AP的方向平移得到△ABC,点A、B、C的对应点分别为A′、B′、C′.若平移后点B的对应点B′的位置如图2,连接DB′.①请在图2中画出此时的△A′B′C′,并在图中标注相应的字母;②若图2中的DB′∥A′C′,则平移的距离为.B.将图1中的△ABC沿射线AP的方向平移得到△A′B′C′,点A、B、C的对应点分别为A′、B′、C′.①在△A′B′C′平移的过程中,若点C′与点D的连线恰好经过点B,请在图3中画出此时的△A′B′C′,并在图中标注相应的字母;②如图3,点C′与点D的连线恰好经过点B,此时平移的距离为.第6页(共16页)23.(12分)综合与探究问题情境:如图1,在△ABC中,AB=AC,点D,E分别是边AB,AC上的点,且AD=AE,连接DE,易知BD=CE.将△ADE绕点A顺时针旋转角度α(0°<α<360°),连接BD,CE,得到图2.(1)变式探究:如图2,若0°<α<90°,则BD=CE的结论还成立吗?若成立,请证明;若不成立,请说明理由;(2)拓展延伸:若图1中的∠BAC=120°,其余条件不变,请解答下列问题:从A,B两题中任选一题作答我选择题A.①在图1中,若AB=10,求BC的长;②如图3,在△ADE绕点A顺时针旋转的过程中,当DE的延长线经过点C时,请直接写出线段AD,BD,CD之间的等量关系;B.①在图1中,试探究BC与AB的数量关系,并说明理由;②在△ADE绕点A顺时针旋转的过程中,当点D,E,C三点在同一条直线上时,请借助备用图探究线段AD,BD,CD之间的等量关系,并直接写出结果.第7页(共16页)2017-2018学年山西省太原市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题含10个小题,每小题3分,共30分)在下列每小题给出的四个选项中,只有一个符合要求,请选出并填入下表相应位置1.【解答】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选:D.2.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:B.3.【解答】解:根据数轴得:不等式组的解集为x≥2,故选:C.4.【解答】解:因为点A(1,﹣2)的对应点A1的坐标为(﹣2,3),即(1﹣3,﹣2+5),所以△ABC平移的方式为:向左3个单位,向上5个单位,故选:A.5.【解答】解:去分母得2(x+2)>6﹣3(x﹣3).故选:D.6.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∵DE∥AB,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC=180°﹣72°﹣36°=72°,第8页(共16页)∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选:C.7.【解答】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选:D.8.【解答】解:由题意可得210x+90(15﹣x)≥1800,故选:A.9.【解答】解:∵直线y=ax+b与直线y=kx交于点B(2,4),∴不等式kx≤ax+b的解集为x≤2.故选:A.10.【解答】解:由旋转知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD,∴AC∥BD,∴∠CBD=∠C,∴∠CBD=∠E,则A、B、D均正确,故选:C.第9页(共16页)二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上11.【解答】解:设一辆自重10t的卡车,其载重的质量为xt,根据题意可得:10+x≤55,故答案为:10+x≤5512.【解答】解:∵△ABC绕点A顺时针旋转60°得到△AED,∴∠DAC=60°,∴∠CAE=∠DAC﹣∠EAD=60°﹣30°=30°.故答案为30°.13.【解答】解:{3𝑥−3>5①5−12𝑥≥3②,由不等式①,得x>83,由不等式②,得x≤4,故原不等式组的解集是83<𝑥≤4,故不等式组{3𝑥−3>55−12𝑥≥3的整数解为3,4,故答案为:3,4.14.【解答】解:∵Rt△ABC中,∠C=90°,∠A=30°,AD=2,DE垂直平分AB.∴DE=1,∠DBE=∠A=30°,∠CBA=60°,∴BD平分∠CBE,∵∠C=90°,DE⊥AB,∴DE=CD=1,故答案为:115.【解答】解:过D作DH⊥BC于H,∵DC=DE=10,∴EH=HC,∵∠CDE=120°,∴∠DCH=30°,∴CH=EH=5√3,第10页(共16页)∴CE=10√3,∴BE=BC﹣CE=24﹣10√3,∵F是BE的中点,∴BF=24−10√32=12﹣5√3,过A作AM⊥BC于M,∵△ABC是等边三角形,∴BM=12BC=12,AM=12√3,∴FM=BM﹣BF=12﹣(12﹣5√3)=5√3,由勾股定理得:AF=√𝐴𝑀2+𝐹𝑀2=√(12√3)2+(5√3)2=√507=13√3.故答案为:13√3.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程)16.【解答】解:2x+1≤3(3﹣x),去括号得:2x+1≤9﹣3x,移项合并得:5x≤8,系数化为1得:x≤85.17.【解答】解:{3𝑥+2<4(𝑥+1)①𝑥3≥𝑥−32−1②解不等式①得:x>﹣2,解不等式②得:x≤15,所以不等式组的解集为:﹣2<x≤15,其解集在数轴上表示为
本文标题:2017-2018学年山西省太原市八年级(下)期中数学试卷
链接地址:https://www.777doc.com/doc-7944536 .html