您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 四川省成都市2018年中考数学模拟卷(四)
2018年四川省成都市中考数学模拟试卷(四)一.选择题(共10小题,满分30分)1.(3分)实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<aD.a<a2<﹣a2.一个正常人的心跳平均每分钟70次,一天大约跳的次数用科学记数法表示这个结果是()A.1.008×105B.100.8×103C.5.04×104D.504×1023.(3分)如图,在下列四个几何体中,从正面、左面、上面看不完全相同的是()A.①②B.②③C.①④D.②④4.(3分)在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=()A.﹣2B.2C.4D.﹣45.(3分)下列各式计算正确的是()A.(﹣3x3)2=9x6B.(a﹣b)2=a2﹣b2C.a3•a2=a6D.x2+x2=x46.(3分)如图,AD⊥CD,AE⊥BE,垂足分别为D,E,且AB=AC,AD=AE.则下列结论①△ABE≌△ACD②AM=AN:③△ABN≌△ACM;④BO=EO.其中正确的有()A.4个B.3个C.2个D.1个7.(3分)某学校七年级1班统计了全班同学在1~8月份的课外阅读数量(单位:本),绘制了折线统计图,下列说法正确的是()A.极差是47B.中位数是58C.众数是42D.极差大于平均数8.(3分)解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3D.2﹣(x+2)=3(x﹣1)9.(3分)如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A.B.πC.30﹣12πD.π10.(3分)已知y关于x的函数表达式是y=ax2﹣2x﹣a,下列结论不正确的是()A.若a=1,函数的最小值是﹣2B.若a=﹣1,当x≤﹣1时,y随x的增大而增大C.不论a为何值时,函数图象与x轴都有两个交点D.不论a为何值时,函数图象一定经过点(1,﹣2)和(﹣1,2)二.填空题(共4小题,满分16分,每小题4分)11.(4分)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大内角可能是.12.(4分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.13.(4分)若,则=.14.(4分)已知,在△ABC中,∠A>∠B,分别以点A,C为圆心,大于AC长为半径画弧,两弧交于点P,点Q,作直线PQ交AB于点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧交于点M,点N,作直线MN交BC于点E,若△CDE是等边三角形,则∠A=.三.填空题(共5小题,满分20分,每小题4分)15.(4分)分解因式:16m2﹣4=.16.(4分)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.17.(4分)世界著名的莱布尼兹三角形如图所示,其排在第8行从左边数第3个位置上的数是.18.(4分)如图,在菱形纸片ABCD中,AB=3,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则tan∠EFG的值为.19.(4分)一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,m),B(n,﹣1)两点,则使kx+b的x的取值范围是.四.解答题(共6小题,满分54分)20.(12分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化简:÷(1﹣)21.(6分)已知关于x的方程(x﹣1)(x﹣4)=k2,k是实数.(1)求证:方程有两个不相等的实数根:(2)当k的值取时,方程有整数解.(直接写出3个k的值)22.(8分)某校为了解八年级500名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组:A组:37.5~42.5,B组:42.5~47.5,C组:47.5~52.5,D组:52.5~57.5,E组:57.5~62.5,并依据统计数据绘制了如下两个不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是;在扇形统计图中D组的圆心角是度.(2)抽取的学生体重中位数落在组;(3)请你估计该校八年级体重超过52kg的学生大约有多少名?(4)取每个小组的组中值作为本组学生的平均体重(A组的组中值为=40),请你估计该校八年级500名学生的平均体重.23.(8分)如图,在一笔直的沿湖道路上有A、B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏东15°的方向,AB=4km.(1)求观光岛屿C与码头A之间的距离(即AC的长);(2)游客小明准备从观光岛屿C乘船沿甜回到码头A或沿CB回到码头B,若开往码头A、B的游船速度相同,设开往码头A、B所用的时间分别是t1、t2,求的值.(结果保留根号)24.(10分)如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB═,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;(3)求S△OEB.25.(10分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.五.解答题(共3小题,满分30分)26.(8分)如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:(1)乙车的速度是千米/时,乙车行驶的时间t=小时;(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;(3)直接写出甲车出发多长时间两车相距80千米.27.(10分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.28.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.2018年四川省成都市中考数学模拟试卷(四)参考答案与试题解析一.选择题(共10小题,满分27分)1.(3分)实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<aD.a<a2<﹣a【解答】解:由数轴可得:﹣1<a<0,则﹣a>0,则a<a2<﹣a,故选:D.2.一个正常人的心跳平均每分钟70次,一天大约跳的次数用科学记数法表示这个结果是()A.1.008×105B.100.8×103C.5.04×104D.504×102【解答】解:∵一个正常人的平均心跳速率约为每分钟70次,∴一天24小时大约跳:24×60×70=10080=1.008×105(次).故选:A.3.(3分)如图,在下列四个几何体中,从正面、左面、上面看不完全相同的是()A.①②B.②③C.①④D.②④【解答】解:球的三视图均为圆、正方体的三视图均为正方形,而圆柱体和圆锥的三视图不完全相同,故选:B.4.(3分)在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=()A.﹣2B.2C.4D.﹣4【解答】解:∵P点关于原点的对称点为P1(﹣3,﹣),∴P(3,),∵P点关于x轴的对称点为P2(a,b),∴P2(3,﹣),∴==﹣2.故选:A.5.(3分)下列各式计算正确的是()A.(﹣3x3)2=9x6B.(a﹣b)2=a2﹣b2C.a3•a2=a6D.x2+x2=x4【解答】解:A、(﹣3x3)2=9x6,正确;B、(a﹣b)2=a2﹣2ab+b2,错误;C、a3•a2=a5,错误;D、x2+x2=2x2,错误;故选:A.6.(3分)如图,AD⊥CD,AE⊥BE,垂足分别为D,E,且AB=AC,AD=AE.则下列结论①△ABE≌△ACD②AM=AN:③△ABN≌△ACM;④BO=EO.其中正确的有()A.4个B.3个C.2个D.1个【解答】解:∵AD⊥CD,AE⊥BE,∴∠D=∠E=90°,由得出Rt△ADC≌Rt△ABE,故①正确;∴∠B=∠C,由得出△ABN≌△ACM,故③正确,∴AN=AM,故②正确;但不能得出BO=EO,故选:B.7.(3分)某学校七年级1班统计了全班同学在1~8月份的课外阅读数量(单位:本),绘制了折线统计图,下列说法正确的是()A.极差是47B.中位数是58C.众数是42D.极差大于平均数【解答】解:A、极差=83﹣28=55≠47,错误;B、中位数是(58+58)÷2=58,正确;C、众数是58,错误;D、平均数=,错误;故选:B.8.(3分)解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3D.2﹣(x+2)=3(x﹣1)【解答】解:方程变形得:﹣=3,去分母得:2﹣(x+2)=3(x﹣1),故选:D.9.(3分)如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A.B.πC.30﹣12πD.π【解答】解:连接OE,OF.∵BD=12,AD:AB=1:2,∴AD=4,AB=8,∠ABD=30°,∴S△ABD==24,S扇形==6π,S△OEB==9,∵两个阴影的面积相等,∴阴影面积=2×(24﹣6π﹣9)=30﹣12π.故选:C.10.(3分)已知y关于x的函数表达式是y=ax2﹣2x﹣a,下列结论不正确的是()A.若a=1,函数的最小值是﹣2B.若a=﹣1,当x≤﹣1时,y随x的增大而增大C.不论a为何值时,函数图象与x轴都有两个交点D.不论a为何值时,函数图象一定经过点(1,﹣2)和(﹣1,2)【解答】解:∵y=ax2﹣2x﹣a,∴当a=1时,y=x2﹣2x﹣1=(x﹣1)2﹣2,则当x=1时,函数取得最小值,此时y=﹣2,故选项A正确,当a=﹣1时,该函数图象开口向下,对称轴是直线x=﹣==﹣1,则当x≤﹣1
本文标题:四川省成都市2018年中考数学模拟卷(四)
链接地址:https://www.777doc.com/doc-8030128 .html