您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 八年级数学平行四边形中的动点问题专题练习
八年级数学平行四边形中的动点问题专题练习1、如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.(1)试探究BE与BF的数量关系,并证明你的结论;(2)求EF的最大值与最小值.2、在四边形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1cm/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3cm/秒的速度向B点运动。已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问:(1)t为何值时,四边形PQCD是平行四边形?(2)在某个时刻,四边形PQCD可能是菱形吗?为什么?,3、如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C—D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t为何值时,四边形APQD也为矩形?ABCDPQAMOFNEBCD4、如图所示,△ABC中,点O是AC边上的一个动点,过O作直线MN//BC,设MN交BCA的平分线于点E,交BCA的外角平分线于F。(1)求证:EOFO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。5、(1)如图1,纸片□ABCD中,AD=5,S□ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为()A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长。CBAEE'DEE'FF'E'DDACBA图1图26、在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.(1)如图①,当点H与点C重合时,可得FG FD.(大小关系)(2)如图②,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.(3)在图②中,当AB=8,BE=3时,利用探究的结论,求CF的长。7、如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC。(1)求证:OC平分∠ACB;(2)若AC=5,BC=7,求CO的长。8、如图1,在菱形ABCD中,AC=2,BD=,AC、BD相交于点O;23(1)求边AB的长及菱形ABCD的面积;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC、CD相交于点E、F,连接EF,判断△AEF是哪一种特殊三角形,并说明理由。(3)求(2)中△AEF的面积的最小值。9、如图,□ABCD的对角线AC、BD相交于点O,BD=12cm,AC=6cm,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O以2cm/s的速度向点D运动。(1)若点E、F同时运动,设运动时间为t秒,当t为何值时,四边形AECF是平行四边形;(2)在(1)的条件下,当AB为何值时,四边形AECF是菱形;(3)求(2)中菱形AECF的面积。10、已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:BD⊥CF.BD=CF.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,第(1)问结论还成立吗?并说明理由.(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由. 11、已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点(1)如图1,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系式________;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明。12、如图,P是等边三角形ABC内一点,连结PA、PB、PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ。(1)观察并猜想AP与CQ之间的数量关系,并证明你的结论;(2)若PA:PB:PC=3:4;5,连结PQ,试判断△PQC的形状,并说明理由。13、(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.14、如图,在△ABC中,AB=AC,AD⊥BC于点D,且AD=8,BC=12,E,F是AB,AC的中点。(1)线段EF=(2)连接ED,FD,求证:四边形AEDF是菱形。(3)动点P从B点以2个单位每秒的速度沿BC运动,运动____________秒时,△BEP是直角三角形?
本文标题:八年级数学平行四边形中的动点问题专题练习
链接地址:https://www.777doc.com/doc-8036708 .html