您好,欢迎访问三七文档
考点测试37合情推理与演绎推理高考概览高考在本考点的常考题型为选择题、填空题,分值5分,中等难度考纲研读1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单推理3.了解合情推理和演绎推理的联系和差异一、基础小题1.用三段论推理:“任何实数的绝对值大于0,因为a是实数,所以a的绝对值大于0”,你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的答案A解析大前提是任何实数的绝对值大于0,显然是不正确的.故选A.2.一个蜂巢里有1只蜜蜂,第一天,它飞出去带回了5个伙伴;第二天,6只蜜蜂飞出去各自带回了5个伙伴;……,如果这个过程继续下去,那么第6天所有蜜蜂归巢后,蜂巢中共有蜜蜂()A.666-16-1只B.66只C.63只D.62只答案B解析根据题意可知,第一天共有蜜蜂1+5=6只;第二天共有蜜蜂6+6×5=62只;第三天共有蜜蜂62+62×5=63只;……;故第6天所有蜜蜂归巢后,蜂巢中共有蜜蜂65+65×5=66只.故选B.3.已知数列{an}的前n项和Sn=n2an(n≥2),而a1=1,通过计算a2,a3,a4,猜想an=()A.2n+12B.2nn+1C.22n-1D.22n-1答案B解析由a1=1,可得a1+a2=4a2,即a2=13,同理可得a3=16,a4=110,故选B.4.(1)已知a是三角形一边的长,h是该边上的高,则三角形的面积是12ah,如果把扇形的弧长l,半径r分别看成三角形的底边长和高,可得到扇形的面积为12lr;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n-1=n2,则(1)(2)两个推理过程分别属于()A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理答案A解析(1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理,故选A.5.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123D.199答案C解析记an+bn=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.6.下面几种推理过程是演绎推理的是()A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推各班人数都超过50人B.由三角形的性质,推测空间四面体的性质C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D.在数列{an}中,a1=1,an=12an-1+1an-1,由此归纳出{an}的通项公式答案C解析A,D是归纳推理;B是类比推理;C运用了“三段论”是演绎推理.7.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n个图形中小正方形的个数是()A.n(n+1)B.nn-12C.nn+12D.n(n-1)答案C解析由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n个图形的小正方形个数为1+2+3+…+n=nn+12.8.法国数学家费马观察到221+1=5,222+1=17,223+1=257,224+1=65537都是质数,于是他提出猜想:任何形如22n+1(n∈N*)的数都是质数,这就是著名的费马猜想.半个世纪之后,善于发现的欧拉发现第5个费马数225+1=4294967297=641×6700417不是质数,从而推翻了费马猜想,这一案例说明()A.归纳推理的结果一定不正确B.归纳推理的结果不一定正确C.类比推理的结果一定不正确D.类比推理的结果不一定正确答案B解析法国数学家费马观察到221+1=5,222+1=17,223+1=257,224+1=65537都是质数,于是他提出猜想:任何形如22n+1(n∈N*)的数都是质数,这是由特殊到一般的推理过程,所以属于归纳推理,由于得出结论的过程没有给出推理证明,所以结果不一定正确.9.甲、乙、丙三人中,一人是教师、一人是记者、一人是医生,已知:丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是教师,乙是医生,丙是记者B.甲是医生,乙是记者,丙是教师C.甲是医生,乙是教师,丙是记者D.甲是记者,乙是医生,丙是教师答案C解析由于“甲的年龄和记者不同”,则甲不是记者,又“记者的年龄比乙小”,则乙也不是记者,从而丙是记者,而“丙(记者)的年龄比医生大”,且“记者的年龄比乙小”,所以乙不是医生,而是教师,从而甲是医生,故选C.10.已知结论:“在正△ABC中,若D是边BC的中点,G是△ABC的重心,则AGGD=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体A-BCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等”,则AOOM=()A.1B.2C.3D.4答案C解析如图设正四面体的棱长为1,则易知其高AM=63,此时易知点O即为正四面体内切球的球心,设其半径为r,利用等积法有4×13×34r=13×34×63,r=612,故AO=AM-MO=63-612=64,故AO∶OM=64∶612=3.11.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为312的格点的坐标为________.答案(16,15)解析因为点(1,0)处标1=12,点(2,1)处标9=32,点(3,2)处标25=52,点(4,3)处标49=72,依此类推得点(16,15)处标312.12.对于命题:如果O是线段AB上一点,则|OB→|·OA→+|OA→|·OB→=0;将它类比到平面的情形是:若O是△ABC内一点,有S△OBC·OA→+S△OCA·OB→+S△OBA·OC→=0;将它类比到空间的情形应该是:若O是四面体A-BCD内一点,则有________.答案VO-BCD·OA→+VO-ACD·OB→+VO-ABD·OC→+VO-ABC·OD→=0解析由线段到平面,线段的长类比为面积,由平面到空间,面积可以类比为体积,由此可以类比得一命题为:O是四面体A-BCD内一点,则有VO-BCD·OA→+VO-ACD·OB→+VO-ABD·OC→+VO-ABC·OD→=0.二、高考小题13.(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩答案D解析由题意可知,“甲看乙、丙的成绩后,不知道自己的成绩”,说明乙、丙两人中一个优秀一个良好,则乙看了丙的成绩,可以知道自己的成绩;丁看了甲的成绩,也可以知道自己的成绩.故选D.14.(2016·北京高考)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多答案B解析解法一:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C错误.故选B.解法二:设袋中共有2n个球,最终放入甲盒中k个红球,放入乙盒中s个红球.依题意知,甲盒中有(n-k)个黑球,乙盒中共有k个球,其中红球有s个,黑球有(k-s)个,丙盒中共有(n-k)个球,其中红球有(n-k-s)个,黑球有(n-k)-(n-k-s)=s个.所以乙盒中红球与丙盒中黑球一样多.故选B.15.(2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2.”乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1.”丙说:“我的卡片上的数字之和不是5.”则甲的卡片上的数字是________.答案1和3解析由丙说的话可知丙的卡片上的数字一定不是2和3.若丙的卡片上的数字是1和2,则乙的卡片上的数字是2和3,甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则乙的卡片上的数字是2和3,此时,甲的卡片上的数字只能是1和2,不满足题意.故甲的卡片上的数字是1和3.16.(2017·北京高考)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是________;(2)记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是________.答案(1)Q1(2)p2解析设线段AiBi的中点为Ci(xi,yi).(1)由题意知Qi=2yi,i=1,2,3,由题图知y1最大,所以Q1,Q2,Q3中最大的是Q1.(2)由题意知pi=2yi2xi=yixi,i=1,2,3.yixi的几何意义为点Ci(xi,yi)与原点O连线的斜率.比较OC1,OC2,OC3的斜率,由题图可知OC2的斜率最大,即p2最大.17.(经典陕西高考)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F,V,E所满足的等式是________.答案F+V-E=2解析因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F+V-E=2.18.(2015·福建高考)一个二元码是由0和1组成的数字串x1x2…xn(n∈N*),其中xk(k=1,2,…,n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x1x2…x7的码元满足如下校验方程组:x4⊕x5⊕x6⊕x7=0,x2⊕x3⊕x6⊕x7=0,x1⊕x3⊕x5⊕x7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于________.答案5解析因为x4⊕x5⊕x6⊕x7=1⊕1⊕0⊕1=0⊕0⊕1=0⊕1=1≠0,所以二元码1101101的前3位码元都是对的;因为x2⊕x3⊕x6⊕x7=1⊕0⊕0⊕1=1⊕0⊕1=1⊕1=0,所以二元码1101101的第6、7位码元也是对的;因为x1⊕x3⊕x5
本文标题:2020高考数学刷题首选卷 第五章 不等式、推理与证明、算法初步与复数 考点测试37 合情推理与演绎
链接地址:https://www.777doc.com/doc-8064201 .html