您好,欢迎访问三七文档
26.2二次函数的图象与性质导入新课讲授新课当堂练习课堂小结第5课时图形面积的最大值2.二次函数y=ax2+bx+c的图象与性质学习目标1.分析实际问题中变量之间的二次函数关系.(难点)2.能应用二次函数的性质求出图形面积的最大值.(重点)导入新课复习引入y=ax2+bx+ca>0a<0开口方向对称轴顶点坐标最值增减性向上向下当x位于对称轴左侧时,y随x的增大而减小;x位于对称轴右侧时,y随x的增大而增大.当x位于对称轴右侧时,y随x的增大而减小;x位于对称轴左侧时,y随x的增大而增大.直线2bxa直线2bxa24(,)24bacbaa24(,)24bacbaa24=4acbya最小值24=4acbya最大值做一做写出下列抛物线的开口方向、对称轴和顶点坐标,并写出其最值.(1)y=x2-4x-5;(配方法)(2)y=-x2-3x+4.(公式法)解:(1)开口方向:向上;对称轴:x=2;顶点坐标:(2,-9);最小值:-9;(2)开口方向:向下;对称轴:x=;顶点坐标:(,);最大值:.3-23-2254254求二次函数的最大(或最小)值一讲授新课合作探究问题1二次函数的最值由什么决定?2yaxbxcxyOxyO2bxa2bxa最小值最大值二次函数的最值由a及自变量的取值范围决定.2yaxbxc问题2当自变量x为全体实数时,二次函数的最值是多少?2yaxbxc244acbya最小值当a>0时,有,此时.2bxa244acbya最大值当a<0时,有,此时.2bxa问题3当自变量x有限制时,二次函数的最值如何确定?2yaxbxc例1求下列函数的最大值与最小值x0y解:-3123x239()224yx232yxx(1)(31)x231()424yx3312Q32x当时,1-44y最小值1x当时,132=2.y最大值典例精析解:0xy5x1-321215yxx(2)(31)x21565yx()53Q<即x在对称轴的右侧.3x当时,26.5y最大值函数的值随着x的增大而减小.1x当时,6.5y最小值方法归纳当自变量的范围有限制时,二次函数的最值可以根据以下步骤来确定:2yaxbxc1.配方,求二次函数的顶点坐标及对称轴.2.画出函数图象,标明对称轴,并在横坐标上标明x的取值范围.3.判断,判断x的取值范围与对称轴的位置关系.根据二次函数的性质,确定当x取何值时函数有最大或最小值.然后根据x的值,求出函数的最值.例2用长为6米的铝合金材料做一个形状如图所示的矩形窗框.窗框的高于宽各位多少时,它的透光面积最大?最大透光面积是多少?(铝合金型材宽度不计)x解:设矩形窗框的宽为xm,则高为m.这里应有x>0,故0<x<2.632x6302x>矩形窗框的透光面积y与x之间的函数关系式是:632xyxg几何图形的最大面积二233.2yxx即233(1).22yx配方得所以,当x=1时,函数取得最大值,最大值y=1.5.x=1满足0<x<2,这时631.5.2x因此,所做矩形窗框的宽为1m、高为1.5m时,它的透光面积最大,最大面积是1.5m2.例1用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?问题1矩形面积公式是什么?典例精析问题2如何用l表示另一边?问题3面积S的函数关系式是什么?例1用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?解:根据题意得S=l(30-l),即S=-l2+30l(0l30).因此,当时,S有最大值301522(1)bla2243022544(1)acba也就是说,当l是15m时,场地的面积S最大.51015202530100200lsO变式1如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长32m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?xx60-2x问题2我们可以设面积为S,如何设自变量?问题3面积S的函数关系式是什么?问题4如何求解自变量x的取值范围?墙长32m对此题有什么作用?问题5如何求最值?最值在顶点处,即当x=15m时,S=450m2.问题1变式1与例1有什么不同?设垂直于墙的边长为x米,S=x(60-2x)=-2x2+60x.0<60-2x≤32,即14≤x<30.变式2如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?xx60-2x问题1变式2与变式1有什么异同?问题2可否模仿变式1设未知数、列函数关系式?问题3可否试设与墙平行的一边为x米?则如何表示另一边?设矩形面积为Sm2,与墙平行的一边为x米,则26013022xSxxx问题4当x=30时,S取最大值,此结论是否正确?问题5如何求自变量的取值范围?0<x≤18.问题6如何求最值?由于30>18,因此只能利用函数的增减性求其最值.当x=18时,S有最大值是378.不正确.实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围.通过变式1与变式2的对比,希望同学们能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.方法总结知识要点二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值,3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.1.如图1,用长8m的铝合金条制成如图的矩形窗框,那么最大的透光面积是.28m3当堂练习2.如图2,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A开始沿AB向B以2cm/s的速度移动(不与点B重合),动点Q从点B开始BC以4cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.图1ABCPQ图233.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费用每平方米1000元,设矩形的一边长为x(m),面积为S(m2).(1)写出S与x之间的关系式,并写出自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.解:(1)设矩形一边长为x,则另一边长为(6-x),∴S=x(6-x)=-x2+6x,其中0<x6.(2)S=-x2+6x=-(x-3)2+9;∴当x=3时,即矩形的一边长为3m时,矩形面积最大,为9m2.这时设计费最多,为9×1000=9000(元)课堂小结建立函数关系式常见几何图形的面积公式依据最值有时不在顶点处,则要利用函数的增减性来确定图形面积的最大值一个关键一个注意
本文标题:2019秋九年级数学下册 第26章 二次函数 26.2 二次函数的图象与性质 2 二次函数y=ax2
链接地址:https://www.777doc.com/doc-8245375 .html