您好,欢迎访问三七文档
第2章概率2.3独立性2.3.2事件的独立性学习目标核心素养1.了解两个事件相互独立的概念,会判断两个事件是否为相互独立事件.(难点)2.掌握相互独立事件同时发生的概率的计算公式,并能利用该公式计算相关问题的概率.(重点)3.了解互斥事件与相互独立事件的联系与区别,综合利用事件的互斥性与独立性求解综合问题.(易错点)1.借助两个事件相互独立的概念,提升数学抽样素养.2.通过具体的实际问题,培养数学建模素养.自主预习探新知1.事件的独立性的概念(1)概念:若事件A,B满足P(A|B)=____,则称事件A,B独立.(2)含义:P(A|B)=P(A)说明事件___的发生不影响事件___发生的概率.2.相互独立事件的概率计算如果任何事件与必然事件独立,与不可能事件也独立,那么(1)两个事件A,B相互独立的充要条件是_________________.P(A)BAP(AB)=P(A)P(B)(2)若事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率P(A1A2…An)=P(A1)P(A2)…P(An).3.相互独立事件的性质如果事件A与B相互独立,那么___与___,___与___,____与____也相互独立.ABABAB思考1:不可能事件与任何一个事件相互独立吗?[提示]相互独立.不可能事件的发生与任何一个事件没有影响.思考2:必然事件与任何一个事件相互独立吗?[提示]相互独立.必然事件的发生与任何一个事件的发生没有影响.思考3:如果事件A与事件B相互独立,则P(B|A)=P(B)正确吗?[提示]正确.如果事件A与事件B相互独立,则P(B|A)=P(B).1.袋内有3个白球和2个黑球,从中有放回地摸球,用A表示“第一次摸得白球”,如果“第二次摸得白球”记为B,那么事件A与B,A与B间的关系是()A.A与B,A与B均相互独立B.A与B相互独立,A与B互斥C.A与B,A与B均互斥D.A与B互斥,A与B相互独立A[因为是有放回地摸球,所以事件A的发生不会影响事件B的发生,所以A与B,A与B均相互独立.]12[事件“甲投球一次命中”记为A,“乙投球一次命中”记为B,“甲、乙两人各投一次恰好命中一次”记为事件C,则C=AB∪AB且AB与AB互斥,P(C)=P(AB∪AB)=P(A)P(B)+P(A)P(B)=12×13+12×23=36=12.]2.甲、乙两人投球命中率分别为12,23,则甲、乙两人各投一次,恰好命中一次的概率为________.0.240.96[三人都达标的概率为0.8×0.6×0.5=0.24.三人都不达标的概率为(1-0.8)×(1-0.6)×(1-0.5)=0.2×0.4×0.5=0.04.三人中至少有一人达标的概率为1-0.04=0.96.]3.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人都达标的概率是________,三人中至少有一人达标的概率是________.合作探究提素养相互独立事件的判断【例1】判断下列各对事件是否是相互独立事件.(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.[思路探究](1)利用独立性概念的直观解释进行判断.(2)计算“从8个球中任取一球是白球”发生与否,事件“从剩下的7个球中任意取出一球还是白球”的概率是否相同进行判断.(3)利用事件的独立性定义进行判断.[解](1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47;若前一事件没有发生,则后一事件发生的概率为57,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.(3)记A:出现偶数点,B:出现3点或6点,则A={2,4,6},B={3,6},AB={6},∴P(A)=36=12,P(B)=26=13,P(AB)=16.∴P(AB)=P(A)·P(B),∴事件A与B相互独立.判断事件是否相互独立的方法(1)定义法:事件A,B相互独立⇔P(AB)=P(A)·P(B).(2)由事件本身的性质直接判定两个事件发生是否相互影响.(3)条件概率法:当P(A)0时,可用P(B|A)=P(B)判断.1.同时掷两颗质地均匀的骰子,令A={第一颗骰子出现奇数点},令B={第二颗骰子出现偶数点},判断事件A与B是否相互独立.[解]A={第一颗骰子出现1,3,5点},B={第二颗骰子出现2,4,6点}.∴P(A)=12,P(B)=12,P(AB)=3×336=14,∴P(AB)=P(A)P(B),∴事件A,B相互独立.相互独立事件发生的概率【例2】面对某种病毒,各国医疗科研机构都在研究疫苗,现有A,B,C三个独立的研究机构在一定的时期内能研制出疫苗的概率分别是15,14,13.求:(1)他们都研制出疫苗的概率;(2)他们都失败的概率;(3)他们能够研制出疫苗的概率.[思路探究]明确已知事件的概率及其关系→把待求事件的概率表示成已知事件的概率→选择公式计算求值[解]令事件A,B,C分别表示A,B,C三个独立的研究机构在一定时期内成功研制出该疫苗,依题意可知,事件A,B,C相互独立,且P(A)=15,P(B)=14,P(C)=13.(1)他们都研制出疫苗,即事件ABC同时发生,故P(ABC)=P(A)P(B)P(C)=15×14×13=160.(2)他们都失败即事件ABC同时发生.故P(ABC)=P(A)P(B)P(C)=(1-P(A))(1-P(B))(1-P(C))=1-151-141-13=45×34×23=25.(3)“他们能研制出疫苗”的对立事件为“他们都失败”,结合对立事件间的概率关系可得所求事件的概率P=1-P(ABC)=1-25=35.1.求相互独立事件同时发生的概率的步骤(1)首先确定各事件之间是相互独立的;(2)确定这些事件可以同时发生;(3)求出每个事件的概率,再求积.2.使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们能同时发生.2.一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回,求:(1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率;(2)第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率.[解]记“第1次取出的2个球都是白球”的事件为A,“第2次取出的2个球都是红球”的事件为B,“第1次取出的2个球中1个是白球、1个是红球”的事件为C,很明显,由于每次取出后再放回,A,B,C都是相互独立事件.(1)P(AB)=P(A)P(B)=C23C25×C22C25=310×110=3100.故第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率是3100.(2)P(CA)=P(C)P(A)=C13·C12C25·C23C25=610·310=950.故第1次取出的2个球中1个是白球、1个是红球,第2次取出的2个球都是白球的概率是950.事件的相互独立性与互斥性[探究问题]1.甲、乙二人各进行一次射击比赛,记A=“甲击中目标”,B=“乙击中目标”,试问事件A与B是相互独立事件,还是互斥事件?事件AB与AB呢?[提示]事件A与B,A与B,A与B均是相互独立事件,而AB与AB是互斥事件.2.在探究1中,若甲、乙二人击中目标的概率均是0.6,如何求甲、乙二人恰有一人击中目标的概率?[提示]“甲、乙二人恰有1人击中目标”记为事件C,则C=AB+AB.所以P(C)=P(AB+AB)=P(AB)+P(AB)=P(A)·P(B)+P(A)·P(B)=(1-0.6)×0.6+0.6×(1-0.6)=0.48.3.由探究1、2,你能归纳出相互独立事件与互斥事件的区别吗?[提示]相互独立事件与互斥事件的区别相互独立事件互斥事件条件事件A(或B)是否发生对事件B(或A)发生的概率没有影响不可能同时发生的两个事件符号相互独立事件A,B同时发生,记作:AB互斥事件A,B中有一个发生,记作:A∪B(或A+B)计算公式P(AB)=P(A)·P(B)P(A∪B)=P(A)+P(B)【例3】红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A、乙对B、丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.求:(1)红队中有且只有一名队员获胜的概率;(2)求红队至少两名队员获胜的概率.[思路探究]弄清事件“红队有且只有一名队员获胜”与事件“红队至少两名队员获胜”是由哪些基本事件组成的,及这些事件间的关系,然后选择相应概率公式求值.[解]设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则D,E,F分别表示甲不胜A、乙不胜B、丙不胜C的事件.因为P(D)=0.6,P(E)=0.5,P(F)=0.5,由对立事件的概率公式知P(D)=0.4,P(E)=0.5,P(F)=0.5.(1)红队有且只有一名队员获胜的事件有DEF,DEF,D-E-F,以上3个事件彼此互斥且独立.所以红队有且只有一名队员获胜的概率为P1=P(DE-F-+DEF+D-E-F)=P(DE-F-)+P(DEF)+P(D-E-F)=0.6×0.5×0.5+0.4×0.5×0.5+0.4×0.5×0.5=0.35.(2)法一:红队至少两人获胜的事件有:DEF,DEF,DEF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P=P(DEF)+P(DEF)+P(DEF)+P(DEF)=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.法二:“红队至少两人获胜”与“红队最多一人获胜”为对立事件,而红队都不获胜为事件DEF,且P(DEF)=0.4×0.5×0.5=0.1.∴红队至少两人获胜的概率为P2=1-P1-P(DEF)=1-0.35-0.1=0.55.1.本题(2)中用到直接法和间接法.当遇到“至少”“至多”问题可以考虑间接法.2.求复杂事件的概率一般可分三步进行:(1)列出题中涉及的各个事件,并用适当的符号表示它们;(2)理清各事件之间的关系,恰当地用事件间的“并”“交”表示所求事件;(3)根据事件之间的关系准确地运用概率公式进行计算.3.某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13s内(称为合格)的概率分别为25,34,13,若对这三名短跑运动员的100米跑的成绩进行一次检测,则求:(1)三人都合格的概率;(2)三人都不合格的概率;(3)出现几人合格的概率最大.[解]记甲、乙、丙三人100米跑成绩合格分别为事件A,B,C,显然事件A,B,C相互独立,则P(A)=25,P(B)=34,P(C)=13.设恰有k人合格的概率为Pk(k=0,1,2,3).(1)三人都合格的概率:P3=(ABC)=P(A)·P(B)·P(C)=25×34×13=110.(2)三人都不合格的概率:P0=(ABC)=P(A)·P(B)·P(C)=35×14×23=110.(3)恰有两人合格的概率:P2=P(ABC)+P(ABC)+P(ABC)=25×34×23+25×14×13+35×34×13=2360.恰有一人合格的概率:P1=1-P0-P2-P3=1-110-2360-110=2560=512.综合(1)(2)可知P1最大.所以出现恰有一人合格的概率最大.1.本节课的重点是事件的相互独立性及其
本文标题:2019-2020学年高中数学 第2章 概率 2.3.2 事件的独立性课件 苏教版选修2-3
链接地址:https://www.777doc.com/doc-8291531 .html