您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 压力、流量、物位检测技术分析
第8章压力、流量和物位检测技术第8章压力、流量和物位检测技术8.1压力检测技术8.2流量测量技术8.3物位检测与控制思考与练习第8章压力、流量和物位检测技术8.1压力检测技术8.1.1压力的基本概念及单位1.压力的基本概念压力是垂直而均匀地作用在单位面积上的力。它的大小由两个因素所决定,即受力面积和垂直作用力的大小,用数学式表示为SFP(8-1)式中,P为压力;F为垂直作用力;S为受力面积。第8章压力、流量和物位检测技术压力也可以用相当的液柱高度来表示,如图8-1所示。根据压力的概念,有hShSSFP(8-2)式中,γ为压力计中液体的重度;h为液柱的高度。可见压力等于液柱高度与液体重度的乘积。第8章压力、流量和物位检测技术图8-1液柱压力示意图第8章压力、流量和物位检测技术2.压力的单位在国际单位制中,压力的单位是帕斯卡,简称帕,代号为Pa。它的定义是在每平方米面积上垂直作用1牛顿的力,即21N/mPa1帕斯卡与其它压力单位的换算关系见表8-1。(8-3)第8章压力、流量和物位检测技术表8-1常用压力单位的换算表第8章压力、流量和物位检测技术3.大气压力、绝对压力、表压力与真空度(1)大气压力:指由于空气的重量垂直作用在单位面积上所产生的压力。(2)绝对压力:它是指流体的实际压力,它以绝对真空为零压力。(3)相对压力:它是指流体的绝对压力与当时当地的大气压力之差。当绝对压力大于大气压力时,其相对压力称为表压力;当绝对压力小于大气压力时,其相对压力称为真空度或负压力。因此,有气绝表PPP式中,P表为表压力;P绝为绝对压力;P气为大气压力。第8章压力、流量和物位检测技术8.1.2压力传感器及其类别1.压力传感器类别压力传感器的主要类别有电位器式、应变式、霍尔式、电感式、压电式、压阻式、电容式及振弦式等,测量范围为7×10-5~5×108Pa;信号输出有电阻、电流、电压、频率等形式。压力测量系统一般由传感器、测量线路和测量装置以及辅助电源所组成。常见的信号测量装置有电流表、电压表、应变仪以及计算机等。目前,利用压阻效应、压电效应或其他固体物理特性的压力传感器已实现小型化、数字化、集成化和智能化,直接把压力转换为数字信号输出,并可与计算机连接,从而实现工业过程的现场控制。第8章压力、流量和物位检测技术表8-2几种常见的压力传感器性能比较表第8章压力、流量和物位检测技术2.常用压力传感器1)(1)结构:弹簧管压力表的结构如图8-2所示。它主要由弹簧管和一组传动放大机构(简称机芯,其中包括拉杆、扇形齿轮、中心齿轮)及指示机构(包括指针、面板上的分度标尺)所组成。第8章压力、流量和物位检测技术图8-2弹簧管压力表第8章压力、流量和物位检测技术3被测压力由接头9通入,迫使弹簧管1的自由端B向右上方扩张。自由端B的弹性变形位移通过拉杆2使扇形齿轮3作逆时针偏转,进而带动中心齿轮4作顺时针偏转,使与中心齿轮同轴的指针5也作顺时针偏转,从而在面板6的刻度标尺上显示出被测压力P的数值。由于自由端的位移与被测压力之间具有比例关系,因此弹簧管压力表的刻度标尺是线性的。游丝7用来克服因扇形齿轮和中心齿轮间的间隙而产生的仪表变差。改变调整螺钉8的位置(即改变机械传动的放大系数),可以实现压力表量程的调整。第8章压力、流量和物位检测技术(2)材料:弹簧管的材料因被测介质的性质和被测压力的高低而不同,一般当P<20MPa(约200kgf/cm2)时,采用磷铜;当P>20MPa时,则采用不锈钢或合金钢。但是,在选用压力表时,必须注意被测介质的化学性质。例如,测量氨气压力必须采用不锈钢弹簧管,而不能采用易被腐蚀的铜质材料;测量氧气压力时,则严禁沾有油脂,以免着火甚至爆炸。目前,我国出厂的弹簧管压力表量程有0.1,0.16,0.25,0.4,0.6,1,1.6,2.5,4,6,10,16,25,40,60(MPa)等。第8章压力、流量和物位检测技术(3)信号远传式压力表:利用变频控制进行恒压供水已经广泛应用。在弹簧管压力表中装入电触点,可构成具有上、下限指示与控制的电接点信号压力表;与电位器配合,可构成电位器式远传压力表,如YCD-150型压力传感器,它结构简单,价格便宜。第8章压力、流量和物位检测技术2)(1)板式压力传感器:该类传感器分为薄板式、膜片式和组合式。测量气体或液体压力的薄板式压力传感器如图8-3(a)所示。圆薄板直径为10mm,厚度为1mm,和壳体连接在一起,引线自上端引出。工作时将传感器的下端旋入引压管,压力均匀地作用在薄板的下表面。薄板受压变形后表面上应变分布如图8-3(b)所示。在薄板周边上,其切向应变为零,径向应变为负应变,且绝对值最大,而在中心处其切向应变与径向应变相等且最大。因此,在贴片时,一般在薄板中心处沿切向贴两片R2和R3,在边缘处沿径向贴两片R1和R4。将应变片按R1、R2、R4、R3的顺序接成闭合回路,便构成差动电桥,可以提高灵敏度和进行温度补偿。第8章压力、流量和物位检测技术图8-3板式压力传感器第8章压力、流量和物位检测技术(2)筒式压力传感器:当被测压力较大时,多采用筒式压力传感器,如图8-4所示。图中工作应变片R1贴在空芯的筒臂外感受应变,补偿应变片R2贴在不发生变形的实芯部位作为温度补偿用。这种传感器可用来测量机床液压系统的压力(几十公斤/厘米2~几百公斤/厘米2)和枪、炮筒腔内的压力(几千公斤/厘米2)(1kgf/cm2=0.098MPa)。(3)扩散硅固体压力传感器:如图8-5所示,扩散硅固体压力传感器是在一块圆形膜片上集成四个等值电阻并串接成电桥,膜片四周用硅杯固定,高压腔与被测压力相接,低压腔与大气相通,通过应变测量压力。第8章压力、流量和物位检测技术图8-4筒式压力传感器第8章压力、流量和物位检测技术图8-5扩散硅压力传感器第8章压力、流量和物位检测技术(4)硅X型压力传感器:利用半导体材料的压阻效应,在硅膜片表面用离子注入制作一个X形的四端元件,一只X形压敏电阻器被置于硅膜边缘,其原理如图8-6(a)所示。其中,1脚接地,3脚加电源电压,激励电流流过3脚和1脚。加在硅膜上的压力与电流垂直,该压力在电阻器上建立了一个横向电场,该电场穿过中点,所产生的电压差由2脚和4脚引出。图8-6中(b)为MPZ10、MPX12系列器件外封装形式,其量程为0~10kPa,线性度为±1.0%。第8章压力、流量和物位检测技术图8-6(a)工作原理图;(b)外形图第8章压力、流量和物位检测技术3)电感式压力传感器是用变换压力的弹性敏感元件将压力变换成位移,再由电感式位移传感器转换成电信号。在压力测量中,差动变压器式传感器应用的比较广泛。(1)CPC型差压计:图8-7是CPC型差压计的结构与电路图。当所测的P1与P2之间的差压变化时,差压计内的膜片产生位移,从而带动固定在膜片上的差动变压器的衔铁移位,使差动变压器二次侧输出电压发生变化,输出电压的大小与衔铁位移成正比,从而也与所测差压成正比。第8章压力、流量和物位检测技术图8-7CPC型差压计第8章压力、流量和物位检测技术(2)微压力变送器:图8-8是微压力变送器的结构示意图。由膜盒将压力变换成位移,再由差动变压器转换成输出电压。内装电路,可输出标准信号,故称变送器。第8章压力、流量和物位检测技术图8-8微压力变送器结构示意图第8章压力、流量和物位检测技术4)电容式压力传感器是将压力的变化转换成电容量变化的一种传感器。目前,从工业生产过程自动化应用来说,有压力、差压、绝对压力、带开方的差压(用于测流量)等品种及高差压、微差压、高静压等规格。第8章压力、流量和物位检测技术(1)电容式差压传感器:电容式差压传感器的核心部分如图8-9所示。它主要由测量膜片(金属弹性膜片)、镀金属的凹形玻璃球面及基座组成。测量膜片左右空间被分隔成两个室。在两室中充满硅油,当左右两室分别承受高压PH和低压PL时,硅油的不可压缩性和流动性,便能将差压ΔP=PH-PL传递到测量膜片的左右面上。因为测量膜片在焊接前加有预张力,所以当ΔP=0时处于中间平衡位置并十分平整,此时定极板左右两电容的电容值完全相等,即CH=CL,电容量的差值ΔC=0。当有差压作用时,测量膜片发生变形,也就是动极板向低压侧定极板靠近,同时远离高压侧定极板,使得电容CH<CL。通过引出线将这个电容变化输送到电子转换电路,可实现对压力或差压的测量。第8章压力、流量和物位检测技术图8-9电容式差压传感器第8章压力、流量和物位检测技术(2)变面积式电容压力传感器:这种传感器的结构原理图如图8-10(a)所示。被测压力作用在金属膜片1上,通过中心柱2、支撑簧片3使可动电极4随膜片中心位移而动作。可动电极4与固定电极5都是由金属材质切削成的同心环形槽构成的,有套筒状突起,断面呈梳齿形,在两电极交错重叠部分的面积决定电容量。固定电极的中心柱6与外壳间有绝缘支架7,可动电极则与外壳连通。压力引起的极间电容变化由中心柱引至电子线路,变为直流信号4~20mA输出。电子线路与上述可变电容安装在同一外壳中,整体小巧紧凑。第8章压力、流量和物位检测技术图8-10(a)结构图;(b)悬挂在介质中;(c)安装在容器壁上第8章压力、流量和物位检测技术5)压电式压力传感器可以测量各种压力,如车轮通过枕木时的强压力,继电器接点压力和人体脉搏的微小压力等。用得最多的是在汽车上测量气压、发动机内部燃烧压力和真空度。如图8-11所示的膜片式压电压力传感器目前较常用。图中,膜片起密封、预压和传递压力的作用。由于膜片的质量很小,而压电晶体的刚度很大,所以传感器具有很高的固有频率(高达100kHz以上),尤其适用于动态压力测量。常用的压电元件是石英晶体。为了提高灵敏度,可采用多片压电元件层叠结构。第8章压力、流量和物位检测技术图8-11膜片式压电压力传感器第8章压力、流量和物位检测技术这种压力传感器可测量102~108Pa的压力,且外型尺寸可做得很小,其下限频率由电荷放大器决定。传感器中,常设置的一个附加质量块和一组极性相反的补偿压电晶体,以补偿测量时因振动造成的测量误差。第8章压力、流量和物位检测技术6)如图8-12所示是振弦式压力传感器的原理结构图。在圆形压力膜片1的上、下两侧安装了两根长度相同的振弦3、4,它们被固紧在支座2上,并加上一定的预应力。当它们受到激励而振动时,产生的振动频率信号分别经放大、振荡电路10、11后到混频器12进行混频,所得差频信号经滤波、整形电路输出。如无外力作用时,压力膜片上、下两根振弦所受张力相同,受激励后产生相同的振动频率,由混频器所得差频信号的频率为零。若有外力F垂直作用于柱体9上时,压力膜片受压弯曲,使上侧振弦3的张力减小,振动频率减低,而下侧振弦4的张力增大,振动频率增高。由混频器输出两者振动频率的差频信号,其频率随外力增大而升高。第8章压力、流量和物位检测技术图8-12振弦式压力传感器第8章压力、流量和物位检测技术7)(1)霍尔式压力计:它是利用霍尔元件测量弹性元件变形的一种电测压力计。它结构简单、体积小、频率响应宽、动态范围(输出电势的变化)大、可靠性高、易于微型化和集成电路化。但其信号转换频率低、温度影响大,使用于要求转换精度高的场合时必须进行温度补偿。第8章压力、流量和物位检测技术(2)霍尔式微压力传感器:它的原理如图8-13所示。当被测压力为零时,霍尔元件的上半部分感受的磁力线方向为从左至右,而下部分感受的磁力线方向从右至左,它们的方向相反,而大小相等,相互抵消,霍尔电动势为零。当被测微压力从进气口进入弹性波纹膜盒时,膜盒膨胀,带动杠杆(起位移放大作用)的末端向下移动,从而使霍尔器件在磁路系统中感受到的磁场方向以从右至左为主,产生的霍尔电动势为正值。如果被测压力为负压,杠杆端部上移,霍尔电动势为负值。由于波纹膜盒的灵敏度很高,又有杠杆的位移放大的作用,所以可用来测量微小压力的变化。霍尔压力传感器也可由弹簧管与霍尔式位移传感器构成。霍尔式位移传感器是将霍尔元件放置在由磁钢产生的恒定梯度磁场中构成的。第8章压
本文标题:压力、流量、物位检测技术分析
链接地址:https://www.777doc.com/doc-846927 .html