您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 大学课件 > 实际问题的函数建模新
函数的应用举例30米有一堵长为30米的墙,现有50米的篱笆,如果利用这堵墙为一边,将篱笆围成一个长方形的鸡舍,请写出鸡舍的面积S与其宽x的关系式.xS引申:如果在现有条件下想得到一个面积最大的鸡舍,将如何确定它的长和宽呢?S=x(50-2x)=-2x2+50x定义域:实际应用问题函数关系式解决数学问题矩形面积引例50-2xxyO102512.5当长为25米,宽为12.5米时面积最大.{x|10≤x25}④还原:将用数学知识和方法得出的结论,还原为实际问题的意义.解决应用题的一般程序是:①审题:弄清题意,分清条件和结论,理顺数量关系;②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;③解模:求解数学模型,得出数学结论;数学建模过程:实际问题抽象概括数学模型推理演算数学模型的解还原说明实际问题的解例2某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表所示:销售单价/元日均销售量/桶6789101112480440400360320280240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?分析:由表中信息可知①销售单价每增加1元,日均销售量就减少40桶②销售利润怎样计算较好?`解:设在进价基础上增加x元后,日均经营利润为y元,则有日均销售量为xx40520)1(40480(桶)而130,040520,0xxx即且1490)5.6(4020052040200)40520(22xxxxxyyx时,当5.6有最大值只需将销售单价定为11.5元,就可获得最大的利润。()Pft例3、某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间关系用图1的一条折线表示;西红柿的种植成本与上市时间的关系用图2的抛物线表示:(1)、写出图1表示的市场售价与时间的函数关系式,写出图2表示的种植成本与时间的函数关系式()Qgt;(2)、认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:210kg元,时间单位:天)0200300t100300P0tQ50150250300100150250解(1)由图1可得市场售价与时间的函数关系式为:100300,0200()2300,200300ttfttt由图2可得种植成本与时间的函数关系式为:21()(150)100,0300200gttt(2)设时刻的纯收益为,则由题意得即t()ht()()(),htftgt22171025,200300211175,020020002()2022ttttttht200300t时,配方整理得,所以当时,取得上的最大值当0200t时,配方整理得21()(50)100,200htt所以当50t时,()ht取得[0,200]上的最大值100;当21()(350)100200htt300t()ht(200,300]87.5综上,由可知,在上可以取得最大值100,此时=50,即二月一日开始的第50天时,上市的西红柿纯收益最大.10087.5()ht[0,300]t1.下图中哪几个图像与下述三件事分别吻合得最好?请你为剩下的那个图像写出一件事。①我离开家不久,发现自己把作业忘在家里,于是返回家里找到作业再上学②我骑车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间③我出发后,心情轻松,缓慢行进,后来为了赶时间开始加速ABC0离家距离时间0离家距离时间0时间离家距离离家距离0时间D梁启超纪念中学余理甜(D)(A)(B)c对应的参考事件:我出发后感到时间较紧,所以加速前进,后来发现时间还很充裕,于是放慢了速度。2.在一定范围内,某种产品的购买量为yt,与单价X元之间满足一次函数关系如果购买1000t,每吨为800元,如果购买2000t,每吨为700元,一客户购买400t,单价应该为()A.820元B.840元C.860元D.880元梁启超纪念中学余理甜c3.一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现,每间客房每天的价格与住房率之间有如下关系:每间每天房价住房率20元18元16元14元65%75%85%95%要使每天收入达到最高,每间定价应为()A.20元B.18元C.16元D.14元4.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每个涨价1元,其销售量就减少20个,为了取得最大利润,每个售价应定为()A.95元B.100元C.105元D.110元梁启超纪念中学余理甜CAxhtkmx:)()(之间函数关系式是与时间距离1图4.某人开汽车沿一条直路以60km/h的速度从A地到150km远处的B地,在B地停留1h后,再以50km/h的速度返回A地.把汽车与A地的距离x(km)表示为时间t(h)(从A地出发时开始)的函数,并画出函数的图象;再把车速vkm/h表示为时间t(h)的函数,并画出函数的图象.),5.3(50150t,150,60t),5.2,0[t),5.3,5.2[t].5.6,5.3[tAB150kmxkmv=-50km/hv=60km/h2图vhthkmv:)()/(的函数关系式与时间车速,50,0,60),5.2,0[t).5.6,5.3[t),5.3,5.2[ta-2x5.如图,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式,并讨论这个函数的定义域.xaxa-2x2)2(xaxVa-2x}.20|{axx定义域为6.将一个底面圆的直径为d的圆柱截成横截面为长方形的棱柱,若这个长方形截面的一条边长为x,截面的面积为S,求面积S以x为自变量的函数式,并写出它的定义域.22xdxSdx}.0|{dxx定义域为22xdOABDC小结解决实际问题的步聚:实际问题读懂问题抽象慨括数学建模推理演算数学模型的解还原说明实际问题的解读出新概念丶新字母丶读出相关制约.在抽象.简化.明确变量和参数的基础上建立一个明确的数学关系基础关键
本文标题:实际问题的函数建模新
链接地址:https://www.777doc.com/doc-8686155 .html