您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 总结/报告 > 《反比例函数》教师教案
《反比例函数》教师教案由于反比例关系是一个重要的数量关系,它渗透着初等函数思想,为中学数学反比例函数的教学奠定了基础,所以它是六年级数学教学中的一个重点。以下是网友为大家整理的《反比例函数》教师教案精选。希望大家都能有所收获!《反比例函数》教师教案1教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学方法教师引导学生进行归纳.教具准备投影片两张第一张:(记作§5.1A)第二张:(记作§5.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t=中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.《反比例函数》教师教案2教学目标:1.通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例2.培养学生的逻辑思维能力3.感知生活中的数学知识重点难点1.通过具体问题认识反比例的量。2.掌握成反比例的量的变化规律及其特征教学难点:认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系相同吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展示与交流利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律情境(一)认识加法表中和是12的直线及乘法表中积是12的曲线。引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的语言描述变化关系乘积(路程)一定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(一定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。活动四:想一想二、反馈与检测1、判断下面每题是否成反比例(1)出油率一定,香油的质量与芝麻的质量。(2)三角形的面积一定,它的底与高。(3)一个数和它的倒数。(4)一捆100米电线,用去长度与剩下长度。(5)圆柱体的体积一定,底面积和高。(6)小林做10道数学题,已做的题和没有做的题。(7)长方形的长一定,面积和宽。(8)平行四边形面积一定,底和高。2、教材“练一练”P33第1题。3、教材“练一练”P33第2题。4、找一找生活中成反比例的例子,并与同伴交流。《反比例函数》教师教案3教学目标:1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;3、利用多媒体动画的演示,让学生体验到反比例的变化规律。教学重点:感受反比例的变化,概括反比例的意义;教学难点:正确判断两种相关联的量是否成反比例;教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)每次拿的支数105421拿的次数总支数教学过程:一、复习1、什么叫做“成正比例的量”?2、判断两种量是否成正比例关键是什么?3、练习:课本表中的两种量是不是成正比例?为什么?二、小组协作概括“成反比例的量”的意义(一)活动一师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!1、学生汇报观察记录单的填写结果。2、引导观察:在填、拿的过程中,你发现了什么?3、师:你能根据表格,写出这三个量的关系式吗?4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。5、揭示反比例的意义(阅读课本,明确反比例关系)6、如果用x、y表示两种相关联的量,用k表示积,反比例关系式怎样表示?(二)活动二:(例3)1、课件出示例3,指名读题,学生独立完成2、总结归纳出正比例和反比例的相同点和不同点三、强化练习发展提高1判定两个量是否成反比例,主要看它们的()是否一定。2全班人数一定,每组的人数和组数。()和()是相关联的量。每组的人数×组数=全班人数(一定)所以()和()是成反比例的量。3判断下面每题中的两种量是不是成反比例,并说明理由。糖果的总数一定,每袋糖果的粒数和装的袋数。煤的总量一定,每天的烧煤量和能够烧的天数。生产电视机的总台数一定,每天生产的台数和所用的天数。长方形的面积一定,它的长和宽。4机动练习:想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?四、全课总结1、你能不能结合日常生活举一些反比例的例子。2、今天这节课,你有什么收获?还有什么遗憾?《反比例函数》教师教案4教学目标:1、理解反比例的意义。2、能根据反比例的意义,正确判断两种量是否成反比例。3、培养学生的抽象概括能力和判断推理能力。教学重点:引导学生理解反比例的意义。教学难点:利用反比例的意义,正确判断两种量是否成反比例。教学过程:一、复习铺垫1、成正比例的量有什么特征?2、下表中的两种量是不是成正比例?为什么?二、自主探究(一)教学例11.出示例1,提出观察思考要求:从表中你发现了什么?这个表同复习的表相比,有什么不同?(1)表中的两种量是每小时加工的数量和所需的加工时间。教师板书:每小时加工数和加工时间(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。教师追问:这是两种相关联的量吗?为什么?(3)每两个相对应的数的乘积都是600.2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?教师板书:零件总数每小时加工数×加工时间=零件总数3.小结通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。(二)教学例21.出示例2,根据题意,学生口述填表。2.教师提问:(1)表中有哪两种量?是相关联的量吗?教师板书:每本张数和装订本数(2)装订的本数是怎样随着每本的张数变化的?(3)表中的两种量有什么变化规律?(三)比较例1和例2,概括反比例的意义。1.请你比较例1和例2,它们有什么相同点?(1)都有两种相关联的量。(2)都是一种量变化,另一种量也随着变化。(3)都是两种量中相对应的两个数的积一定。2.教师小结像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?教师板书:xy=k(一定)三、课堂小结1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?四、课堂练习完成教材43页做一做五、课后作业练习七6、7、8、9题。六、板书设计成反比例的量xy=k(一定)每小时加工数×加工时间=零件总数(一定)每本页数×装订本数=纸的总页数(一定)《反比例函数》教师教案5备课过程,我认真研读教材,认为本节课重点和难点就是掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”、“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”一般式的复习。为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。情境设置:汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。(1)你能用含v的代数式来表示t吗?(2)时间t是速度v的函数吗?设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。一般式变形:(其中k均不为0)通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。为加深难度,我又补充了几个练习:1、为何值时,为反比例函数?2是的反比例函数,是的正比例函数,则与成什么关系?关于课堂教学:由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。经验感想:1、课前认真准备,对授课效果的影响是不容忽视的。2、教师的精神状态直接影响学生的精神状态。3、数学教学一定要重概念,抓本质。4、课堂上要注重学生情感,表情,可适当调整教学深度。
本文标题:《反比例函数》教师教案
链接地址:https://www.777doc.com/doc-9226696 .html