您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中数学教案范例【推荐5篇】
参考资料,少熬夜!初中数学教案范例【推荐5篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“初中数学教案范例【推荐5篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!初中数学教案【第一篇】教学目标:1、引导同学们领略数学隐藏在生活中的迷人之处;2、培养同学们对数学的兴趣。教学内容:生活中的数学。教学方法:启发探索、小游戏教具安排:多媒体、剪纸、小剪刀三把教学过程:师:同学们,从小学到现在我们都在跟数学打交道,能说说大家对数学的感受吗?学生讨论。师:同学们,不管以前你们喜不喜欢数学,但老师要告诉大家,其实数学很有趣,它不仅出现在我们的课本,更隐藏在生活的每个角落,只要我们仔细探究,就会发现它在我们的周围闪着迷人的光,希望大家从今天开始,喜欢数学,与数学成为好朋友,好好领略好朋友带给我们的美的享受。事不宜迟,现在我们马上开始我们的数学探究之旅。首先,我们来玩个小游戏:请大家拿出笔和纸,根据下面的步骤来操作,你会有惊人的发现。(PPT演示)[1]首先,随意挑一个数字(0、1、2、3、4、5、6、7)[2]把这个数字乘上2[3]然后加上5[4]再乘以50[5]如果你今年的生日已经过了,把得到的数目加上1759;如果还没过,加1758[6]最后一个步骤,用这个数目减去你出生的那一年(公元的)师:发现了什么?第一个数字是不是你一开始选择的数字呢?那接下来的两个呢?如无意外,就是你的年龄了。是不是很有趣呢?至于为什么会这样课后大家仔细想想自然就明白啦,这就是数学的魅力所在了。接下来我们来尝试帮助格尼斯堡的居民解决下面的问题参考资料,少熬夜!(PPT演示):格尼斯堡建造在普蕾尔河岸上。7座桥连接着两个岛和河岸:居民们的一项普遍爱好是尝试在一次行走中跨过所有的7座桥而不重复经过任何一座桥。同学们,你们能帮助他们实现这个想法吗?拿出纸和笔设计的路线。学生思考设计。师:同学们行吗?事实上,著名数学家欧拉已经证明不能解决这个问题了,可是这是为什么呢?别急,我们继续看下去。1944年的空袭,毁坏了大多数的旧桥,格尼斯堡在河上重新建了5座桥:现在请同学们再尝试一下,在一次行走中跨过所有的5座桥而不重复经过任何一座桥。学生思考。师:同学们,这次行得通了吧?那么为什么呢?有没有同学可以说一下他的想法?其实,我们的欧拉大师经过研究大量类似的网络,证明了这样的事实(PPT演示):要走完一条路线而其中每一段行程只许经过一次,只有当奇数结点的数目是0或2时才是有可能的,在其他情况下,如果不走回头路,就不能历遍整个网络。他还发现:如果有两个奇结点,那么经过整个路线的形成必须从一个奇结点开始,到另一个奇结点结束。师:我们来看一下是不是这样的?第一个图奇结点的个数为3,第二个图奇结点的个数减少到2个了,看来真的是这样的。现在请同学们自己在练习本上解决这个问题:(PPT演示)下面是一幅农场的大门的图。如果笔不离纸,又不重复经过任一条线,有没有可能画成它?学生思考讨论。师:我们看到它的奇结点个数为4,由欧拉的证明我们知道不能一笔画成。那如果农场主将门的形状做成这样呢?(PPT演示)学生尝试。师:是不是可以啦,为什么呢?生:奇结点个数为2。师:这种不用走回头路而历遍整条线路的情况,不仅仅具有趣味性,在现实生活中具有很重要的实用性,比如,我们的邮递员和煤气抄表员,不走回头路意味着可以节省很多宝贵的时间。看来,数学并不像某些时候想的那样没什么用处了吧?下面我们继续我们的奥秘之类吧。参考资料,少熬夜!今天我们班有同学生日吗?如果你生日,爸爸妈妈给你买了一个正方形的蛋糕,你要把它切成不同形状的平均大小的7块,怎么切?能行吗?尝试一下。其实很简单,你只需要把正方形的周边(即周长)分成7个等长,定出蛋糕的中心,从周边划分等长的标记切向中电,(如图所示)即可。为什么呢?这里我们用到三角形等高等底面积相等的性质。吃完了蛋糕,我们来观赏一下百合花。(PPT演示):一个乡村的池塘里种了美丽的百合花,百合花生长得很快,使它们覆盖的面积每天增加一倍。30天后,长满了整个池塘,那么池塘只被百合花覆盖一半时是多少天呢?同学们,你知道吗?学生讨论。师:答案是29天,多么神奇,是吧?潜意识里我们很难接受答案就是29天,只与30天差一天。但用数学我们很容易很清楚地知道是29天,奥秘就在“它们覆盖的面积每天增加一倍”这句话里面。你看,数学是多么聪慧、多么神奇的家伙!初中数学教案【第二篇】教学目标1、使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;2、了解代数式的概念,使学生能说出一个代数式所表示的数量关系;3、通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;4、通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。教学建议1、知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。2、教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数参考资料,少熬夜!式的概念可以从三个方面去理解:(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性。(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式。如:2,m都是代数式。xxx等都不是代数式。3、教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。如:说出代数式7(a-3)的意义。分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。4、书写代数式的注意事项:(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面。如3×a,应写作3a或写作3a,a×b应写作或写作ab。带分数与字母相乘,应把带分数化成假分数,数字与数字相乘一般仍用“×”号。(2)代数式中有除法运算时,一般按照分数的写法来写。(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来。5、对本节例题的分析:例1是用代数式表示几个比较简单的数量关系,这些小学都学过。比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍。例2是说出一些比较简单的代数式的意义。因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已。6、教法建议(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。参考资料,少熬夜!(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。7、教学重点、难点:重点:用字母表示数的意义难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。教学设计示例课堂教学过程设计一、从学生原有的认知结构提出问题1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)(1)加法交换律a+b=b+a;(2)乘法交换律a·b=b·a;(3)加法结合律(a+b)+c=a+(b+c);(4)乘法结合律(ab)c=a(bc);(5)乘法分配律a(b+c)=ab+ac指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要小时,试问步行、参考资料,少熬夜!骑车、乘汽车的速度分别是多少?3、若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?4、(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代数式。那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容。三、讲授新课1、代数式单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式。学习代数,首先要学习用代数式表示数量关系,明确代数上的意义。2、举例说明例1填空:(1)每包书有12册,n包书有__________册;(2)温度由t℃下降到2℃后是_________℃;(3)棱长是a厘米的正方体的体积是_____立方厘米;(4)产量由m千克增长10%,就达到_______千克(此例题用投影给出,学生口答完成)解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m例2说出下列代数式的意义:解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方说明:(1)本题应由教师示范来完成;(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等例3用代数式表示:(1)m与n的和除以10的商;(2)m与5n的差的平方;参考资料,少熬夜!(3)x的2倍与y的和;(4)ν的立方与t的3倍的积分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面四、课堂练习1、填空:(投影)(1)n箱苹果重p千克,每箱重_____千克;(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;(3)底为a,高为h的三角形面积是______;(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____2、说出下列代数式的意义:(投影)3、用代数式表示:(投影)(1)x与y的和;(2)x的平方与y的立方的差;(
本文标题:初中数学教案范例【推荐5篇】
链接地址:https://www.777doc.com/doc-10505843 .html