您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【新高考复习】第7讲 解三角形应用举例
第7讲解三角形应用举例一、选择题1.在相距2km的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离为()A.6kmB.2kmC.3kmD.2km解析如图,在△ABC中,由已知可得∠ACB=45°,∴ACsin60°=2sin45°,∴AC=22×32=6(km).答案A2.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.102海里B.103海里C.203海里D.202海里解析如图所示,易知,在△ABC中,AB=20,∠CAB=30°,∠ACB=45°,根据正弦定理得BCsin30°=ABsin45°,解得BC=102(海里).答案A3.(2017·合肥调研)如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与B的距离为()A.akmB.3akmC.2akmD.2akm解析由题图可知,∠ACB=120°,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=a2+a2-2·a·a·-12=3a2,解得AB=3a(km).答案B4.如图,一条河的两岸平行,河的宽度d=0.6km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1km,水的流速为2km/h,若客船从码头A驶到码头B所用的最短时间为6min,则客船在静水中的速度为()A.8km/hB.62km/hC.234km/hD.10km/h解析设AB与河岸线所成的角为θ,客船在静水中的速度为vkm/h,由题意知,sinθ=0.61=35,从而cosθ=45,所以由余弦定理得110v2=110×22+12-2×110×2×1×45,解得v=62.选B.答案B5.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于()A.56B.153C.52D.156解析在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得BCsin30°=30sin135°,所以BC=152.在Rt△ABC中,AB=BCtan∠ACB=152×3=156.答案D二、填空题6.如图所示,一艘海轮从A处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B处,海轮按北偏西60°的方向航行了30分钟后到达C处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分.解析由已知得∠ACB=45°,∠B=60°,由正弦定理得ACsinB=ABsin∠ACB,所以AC=AB·sinBsin∠ACB=20×sin60°sin45°=106,所以海轮航行的速度为10630=63(海里/分).答案637.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析如图,OM=AOtan45°=30(m),ON=AOtan30°=33×30=103(m),在△MON中,由余弦定理得,MN=900+300-2×30×103×32=300=103(m).答案1038.在200m高的山顶上,测得山下一塔顶和塔底的俯角分别是30°,60°,则塔高为________m.解析如图,由已知可得∠BAC=30°,∠CAD=30°,∴∠BCA=60°,∠ACD=30°,∠ADC=120°.又AB=200m,∴AC=40033(m).在△ACD中,由余弦定理得,AC2=2CD2-2CD2·cos120°=3CD2,∴CD=13AC=4003(m).答案4003三、解答题9.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sinα的值.解(1)依题意知,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos120°=784.解得BC=28.所以渔船甲的速度为BC2=14海里/时.(2)在△ABC中,因为AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理,得ABsinα=BCsin120°,即sinα=ABsin120°BC=12×3228=3314.10.(2015·安徽卷)在△ABC中,A=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.解设△ABC的内角A,B,C所对边的长分别是a,b,c,由余弦定理,得a2=b2+c2-2bccos∠BAC=(32)2+62-2×32×6×cos3π4=18+36-(-36)=90,所以a=310.又由正弦定理,得sinB=bsin∠BACa=3310=1010,由题设知0Bπ4,所以cosB=1-sin2B=1-110=31010.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B.由正弦定理,得AD=AB·sinBsin(π-2B)=6sinB2sinBcosB=3cosB=10.11.(2016·全国Ⅲ卷)在△ABC中,B=π4,BC边上的高等于13BC,则cosA=()A.31010B.1010C.-1010D.-31010解析设BC边上的高AD交BC于点D,由题意B=π4,BD=13BC,DC=23BC,tan∠BAD=1,tan∠CAD=2,tanA=1+21-1×2=-3,所以cosA=-1010.答案C12.如图所示,D,C,B三点在地面同一直线上,DC=a,从D,C两点测得A点仰角分别为α,β(α<β),则点A离地面的高AB等于()A.asinα·sinβsin(β-α)B.asinα·sinβcos(β-α)C.acosα·cosβsin(β-α)D.acosα·cosβcos(β-α)解析结合题图示可知,∠DAC=β-α.在△ACD中,由正弦定理得:DCsin∠DAC=ACsinα,∴AC=asinαsin∠DAC=asinαsin(β-α).在Rt△ABC中,AB=ACsinβ=asinαsinβsin(β-α).答案A13.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于________m.解析如图,∠ACD=30°,∠ABD=75°,AD=60m,在Rt△ACD中,CD=ADtan∠ACD=60tan30°=603(m),在Rt△ABD中,BD=ADtan∠ABD=60tan75°=602+3=60(2-3)(m),∴BC=CD-BD=603-60(2-3)=120(3-1)(m).答案120(3-1)14.如图,在海岸A处,发现北偏东45°方向距A为(3-1)海里的B处有一艘走私船,在A处北偏西75°方向,距A为2海里的C处的缉私船奉命以103海里/时的速度追截走私船.此时走私船正以10海里/时的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(注:6≈2.449).解设缉私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,则有CD=103t(海里),BD=10t(海里).在△ABC中,∵AB=(3-1)海里,AC=2海里,∠BAC=45°+75°=120°,根据余弦定理,可得BC=(3-1)2+22-2×2×(3-1)cos120°=6(海里).根据正弦定理,可得sin∠ABC=ACsin120°BC=2×326=22.∴∠ABC=45°,易知CB方向与正北方向垂直,从而∠CBD=90°+30°=120°.在△BCD中,根据正弦定理,可得sin∠BCD=BDsin∠CBDCD=10t·sin120°103t=12,∴∠BCD=30°,∠BDC=30°,∴BD=BC=6(海里),则有10t=6,t=610≈0.245小时=14.7分钟.故缉私船沿北偏东60°方向,需14.7分钟才能追上走私船.
本文标题:【新高考复习】第7讲 解三角形应用举例
链接地址:https://www.777doc.com/doc-12788688 .html