您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 专题07 比较大小(选填题11种考法)(解析版)
专题07比较大小(选填题11种考法)考法一与特殊值比较大小【例1-1】(2023·海南海口·农垦中学校考模拟预测)已知0.23a,30.2b,3log0.2c,则()A.abcB.acbC.cabD.bca【答案】A【解析】因为3xy在R上单调递增,且0.20,所以0.20331a;因为0.2xy在R上单调递减,且30,所以3000.20.21b;因为3logyx在0,上单调递增,且0.21,所以33log0.2log10c.综上所述,abc,故选:A.【例1-2】(2023·西藏林芝·校考模拟预测)若2log3a,3log2b,41log3c,则下列结论正确的是()A.acbB.cbaC.bcaD.cab【答案】B【解析】由对数函数2logyx在0,x上单调递增可知,22log3log21a,可得1,a;由对数函数3logyx在0,x上单调递增可知,3330loglog2log131b,可得0,1b;由对数函数4logyx在0,x上单调递增可知,441loglog103c,可得,0c;所以可得cba.故选:B【变式】1.(2023·陕西安康)设1.2311,log2,33abc,则()A.bacB.bcaC.cabD.cba【答案】A【解析】因为3311log2log323b,1.211133ca,所以bac.故选:A2.(2022·天津·统考高考真题)已知0.72a,0.713b,21log3c,则()A.acbB.bcaC.abcD.cab【答案】C【解析】因为0.70.7221120log1log33,故abc.故答案为:C.3.(2021·天津·统考高考真题)设0.3212log0.3,log0.4,0.4abc,则a,b,c的大小关系为()A.abcB.cabC.bcaD.acb【答案】D【解析】22log0.3log10,0a,122225log0.4log0.4loglog212,1b,0.3000.40.41,01c,acb.故选:D.4.(2023·西藏拉萨)设0.23a,0.2log0.3b,3πtan5c则()A.abcB.bcaC.cbaD.cab【答案】C【解析】0.20331a,所以1a;0.20.20.20log1log0.3log0.21b,所以01b;3ππ52,所以3πtan05c,则cba.故选:C.考法二指数式比较大小【例2-1】(2023·天津·统考高考真题)若0.50.60.51.01,1.01,0.6abc,则,,abc的大小关系为()A.cabB.cbaC.abcD.bac【答案】D【解析】由1.01xy在R上递增,则0.50.61.011.01ab,由0.5yx在[0,)上递增,则0.50.51.010.6ac.所以bac.故选:D【例2-2】(2023·山东聊城·统考三模)设0.50.2a,0.20.5b,0.5log0.2c则()A.acbB.bcaC.cabD.cba【答案】D【解析】由0.2xy单调递减可知:0.50.20.20.2.由0.2yx单调递增可知:0.20.20.20.5,所以0.50.20.20.5,即ab,且1b.由0.5logyx单调递减可知:0.50.5log0.2log0.51c,所以cba.故选:D【例2-3】(2023·安徽淮南·统考一模)若75a,86b=,22e2ec,则实数a,b,c的大小关系为()A.acbB.cbaC.bcaD.bac【答案】B【解析】由已知可得,7ln5log5ln7a,8ln6log6ln8b,由22e2ec可得,22lne2c,所以2222lnelne2lne2c.设ln,1ln(2)xfxxx,则22ln2ln,12ln(2)xxxxfxxxxx,因为1x,故21,ln2ln0xxxx,所以2ln2ln0xxxx即()0fx¢,所以fx在1,上为增函数,又5af,6bf,2ecf,又2e65,所以cba.故选:B.【变式】1.(2023秋·湖北荆州·高三沙市中学校考阶段练习)设0.30.232,3,log2abc,则,,abc的大小关系为()A.abcB.cbaC.bcaD.cab【答案】D【解析】因为3121110.330.221010101010108,2223339ab,而110yx在0,上单调递增,所以11101089,即ab,又33log2log31c,而0.30221a,则ca,所以cab.故选:D.2.(2023·陕西商洛·镇安中学校考模拟预测)已知0.20.3a,0.30.2b,15ln0.3c,则()A.abcB.bcaC.acbD.cba【答案】A【解析】0.2yx在0,上单调递增,0.20.20.30.2;又0.2xy在R上单调递减,0.20.30.20.2,0.20.30.30.2,即ab;0.311110.20.2115ln0.355ln5ln3e,cb;综上所述:abc.故选:A.3.(2022·全国·高三专题练习)已知3.93.83.93.83.9,3.9,3.8,3.8abcd,则abcd,,,的大小关系为()A.dcbaB.dbcaC.bdcaD.bcda【答案】B【分析】构造函数lnxfxx,利用导数判断函数的单调性,可得3.9(3.8)ff,从而可得3.83.93.93.8,再由3.8yx在0,上单调递增,即可得出选项.【详解】构造函数lnxfxx,则21lnxfxx,当,xe时,0fx,故lnxfxx在,xe上单调递减,所以3.9(3.8)ff,所以ln3.9ln3.83.93.8,3.8ln3.93.9ln3.8所以3.83.9ln3.9ln3.8,3.83.93.93.8,因为3.8yx在0,上单调递增,所以3.83.83.83.9,同理3.93.93.83.9,所以3.83.83.93.93.83.93.83.9,故选:B考法三函数的性质比较大小【例3-1】(2022·江西)函数ee2sinxxfxx.若420a,5log10b,logacb,则有()A.fafbfcB.fafcfbC.fbfafcD.fbfcfa【答案】A【解析】因为函数ee2sinxxfxx,所以ee2cosxxfxx,当0x时,22cos0fxx,所以fx在0,上递增,因为4455log20log162,1log10log252,0loglog1aaabcba,所以0abc,所以()()()fafbfc,故选:A【例3-2】(2023·江苏苏州·苏州中学校考模拟预测)已知2cosfxxx,若34eaf,4ln5bf,14cf,则a,b,c的大小关系为()A.cbaB.cabC.bcaD.acb【答案】D【解析】因为2()cos,Rfxxxx,定义域关于原点对称,22()()cos()cosfxxxxxfx,所以()fx为R上的偶函数,当0x时,()2sin,fxxx,设2singxxx,则()2cosgxx,1cos1x,0gx,所以()gx即()fx在[0,)上单调递减,所以()(0)0fxf,所以()fx在[0,)上单调递减,又因为()fx为偶函数,所以()fx在(,0]上单调递增,又因为41ln0,054,445lnlnln554bfff,1144cff又因为31411eee4,因为141lne4,41445ee,2.4e4,所以145e4,所以145lneln4,即15ln44,所以3415eln44,所以3441e5ln4fff,即acb.故选:D.【变式】1(2022·江苏)已知函数()eexxfx,则0.60.60.4(0.4),(0.6),(0.4)afbfcf的大小关系为()A.bacB.abcC.cabD.acb【答案】D【解析】由0.630.20.20.6(0.6)0.216,0.420.20.20.4(0.4)0.16,即0.20.20.160.216,所以0.40.60.40.6,又0.60.40.40.4,所以0.60.40.60.40.40.6,而()eexxfx递增,故0.60.40.6(0.4)(0.4)(0.6)afcfbf故选:D2.(2023·全国·统考高考真题)已知函数2(1)exfx.记236,,222afbfcf,则()A.bcaB.bacC.cbaD.cab【答案】A【解析】令2()(1)gxx,则()gx开口向下,对称轴为1x,因为63634112222,而22(63)4962166270,所以636341102222,即631122由二次函数性质知63()()22gg,因为62624112222,而22(62)4843164384(32)0,即621122,所以62()()22gg,综上,263()()()222ggg,又exy为增函数,故acb,即bca.故选:A.3.(2023·河北沧州·统考三模)已知()fx为奇函数,当02x时,2()2fxxx,当2x时,()31fxx,则()A.0.30.32623fffB.0.30.32326fffC.0.30.32632fffD.0.30.33226fff【答案】A【解析】因为当02x时,22fxxx,则fx在0,1上单调递增,在1,2上单调递减,当2x时,31fxx,则fx在2,3上单调递减,在3,上单调递增.且20231f,所以fx在0,1上单调递增,在1,3上单调递减,在3,上单调递增.因为262651(1)ffff,0.30.31233,则0.30.3123fff所以0.30.32623fff.故选:A4.(2023春·广西·高三校联考阶段练习)已知函数fx在10,
本文标题:专题07 比较大小(选填题11种考法)(解析版)
链接地址:https://www.777doc.com/doc-12820763 .html