您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 人事档案/员工关系 > 浙江省嘉兴市2014年中考数学试卷及答案(解析版)
浙江省嘉兴市2014年中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,请选出各题中唯的正确选项,不选、多选、错选,均不得分)1.(4分)(2014年浙江嘉兴)﹣3的绝对值是()A.﹣3B.3C.D.考点:绝对值.专题:计算题.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣3|=3.故﹣3的绝对值是3.故选B.点评:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2014年浙江嘉兴)如图,AB∥CD,EF分别为交AB,CD于点E,F,∠1=50°,则∠2的度数为()A.50°B.120°C.130°D.150°考点:平行线的性质.分析:根据对顶角相等可得∠3=∠1,再根据两直线平行,同旁内角互补解答.解答:解:如图,∠3=∠1=50°(对顶角相等),∵AB∥CD,∴∠2=180°﹣∠3=180°﹣50°=130°.故选C.点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.3.(4分)(2014年浙江嘉兴)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6B.7C.8D.9考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选C.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(4分)(2014年浙江嘉兴)2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384400000米,数据384400000用科学记数法表示为()A.3.844×108B.3.844×107C.3.844×109D.38.44×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384400000有9位,所以可以确定n=9﹣1=8.解答:解:384400000=3.844×108.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(4分)(2014年浙江嘉兴)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况考点:扇形统计图.分析:利用扇形统计图的特点结合各选项利用排除法确定答案即可.解答:解:A、能够看出各项消费占总消费额的百分比,故选项正确;B、不能确定各项的消费金额,故选项错误;C、不能看出消费的总金额,故选项错误;D、不能看出增减情况,故选项错误.故选A.点评:本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.6.(4分)(2014年浙江嘉兴)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.8考点:垂径定理;勾股定理.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8,故选D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.7.(4分)(2014年浙江嘉兴)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=aC.(﹣a)3•a2=﹣a6D.(2a2)3=6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,故选项错误;B、原式=a2÷a=a,故选项正确;C、原式=﹣a3•a2=﹣a5,故选项错误;D、原式=8a6,故选项错误.故选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.8.(4分)(2014年浙江嘉兴)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5B.2C.2.5D.3考点:圆锥的计算.分析:半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.解答:解:设圆锥的底面半径是r,则得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.故选D.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9.(4分)(2014年浙江嘉兴)如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为()A.2cmB.2cmC.4cmD.4cm考点:翻折变换(折叠问题).分析:先证明EG是△DCH的中位线,继而得出DG=HG,然后证明△ADG≌△AHG,得出∠BAH=∠HAG=∠DAG=30°,在Rt△ABH中,可求出AB,也即是CD的长.解答:解:∵点E,F分别是CD和AB的中点,∴EF⊥AB,∴EF∥BC,∴EG是△DCH的中位线,∴DG=HG,由折叠的性质可得:∠AGH=∠ABH=90°,∴∠AGH=∠AGD=90°,在△AGH和△AGD中,,∴△ADG≌△AHG(SAS),∴AD=AH,∠DAG=∠HAG,由折叠的性质可得:∠BAH=∠HAG,∴∠BAH=∠HAG=∠DAG=∠BAD=30°,在Rt△ABH中,AH=AD=4,∠BAH=30°,∴HB=2,AB=2,∴CD=AB=2.故选B.点评:本题考查了翻折变换、三角形的中位线定理,解答本题的关键是判断出∠BAH=∠HAG=∠DAG=30°,注意熟练掌握翻折变换的性质.10.(4分)(2014年浙江嘉兴)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或﹣或考点:二次函数的最值.专题:分类讨论.分析:根据对称轴的位置,分三种情况讨论求解即可.解答:解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时,二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选C.点评:本题考查了二次函数的最值问题,难点在于分情况讨论.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2014年浙江嘉兴)方程x2﹣3x=0的根为0或3.考点:解一元二次方程-因式分解法.分析:根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.解答:解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.点评:本题考查了解一元二次方程的方法,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.(5分)(2014年浙江嘉兴)如图,在直角坐标系中,已知点A(﹣3,﹣1),点B(﹣2,1),平移线段AB,使点A落在A1(0,﹣1),点B落在点B1,则点B1的坐标为(1,1).考点:坐标与图形变化-平移.分析:根据网格结构找出点A1、B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.解答:解:如图,点B1的坐标为(1,1).故答案为:(1,1).点评:本题考查了坐标与图形变化﹣平移,熟练掌握网格结构准确找出点的位置是解题的关键.13.(5分)(2014年浙江嘉兴)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为7tanα米(用含α的代数式表示).考点:解直角三角形的应用-仰角俯角问题.分析:根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.解答:解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=7tanα(米).故答案为:7tanα.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.14.(5分)(2014年浙江嘉兴)有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两个人同坐2号车的概率为.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个人同坐2号车的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有4种等可能的结果,两个人同坐2号车的只有1种情况,∴两个人同坐2号车的概率为:.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.(5分)(2014年浙江嘉兴)点A(﹣1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1﹣y2>0(填“>”或“<”).考点:一次函数图象上点的坐标特征.分析:根据k<0,一次函数的函数值y随x的增大而减小解答.解答:解:∵直线y=kx+b的k<0,∴函数值y随x的增大而减小,∵点A(﹣1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,﹣1<3,∴y1>y2,∴y1﹣y2>0.故答案为:>.点评:本题考查了一次函数图象上点的坐标特征,主要利用了一次函数的增减性.16.(5分)(2014年浙江嘉兴)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是①③⑤.考点:圆的综合题;垂线段最短;平行线的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;切线的判定;轴对称的性质;相似三角形的判定与性质.专题:推理填空题.分析:(1)由点E与点D关于AC对称可得CE=CD,再根据DF⊥DE即可证到CE=CF.(2)根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.(3)连接OC,易证△AOC是等边三角形,AD=OD,根据等腰三角形的“三线合一”可求出∠ACD,进而可求出∠ECO=90°,从而得到EF与半圆相切.(4)利用相似三角形的判定与性质可证到△DBF是等边三角形,只需求出BF就可求出DB,进而求出AD长.(5)首先根据对称性确定线段EF扫过的图形,然后探究出该图形与△ABC的关系,就可求出线段EF扫过的面积.解答:解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF”正确.②当CD⊥AB时,如图2所
本文标题:浙江省嘉兴市2014年中考数学试卷及答案(解析版)
链接地址:https://www.777doc.com/doc-2322613 .html