您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 华东理工大学线性代数习题答案-第二章
第二章行列式一、习题解答2.1(1)解:逆序数(4132)4(2)解:(36195)4(3)解:(3)(2)(21(1)...3)12nnnn2.2解:根据行列式的定义,每个乘积均由来自不同行不同列的元素组成,当来自不同行不同列的元素的行标为自然排列时,其列标的逆序数决定了该乘积项的符号,根据观察,出现4x的只有主对角线上的四个元素的相乘项11223344aaaa,该项为(1234)4(1)236xxxxx,故4x的系数为6,而可以出现3x的乘积项有两项,它们是1221334414223341,,aaaaaaaa即分别为3)4231(3)1234(33)1(,331)1(xxxxxxxx两项相加,即知3x的系数为6。2.3(1)解:将行列式的2,3,4列全加到第一列后,再提公因子,得原式=121314(1)(1)(1)3111111111113011101101003331(1)(1)(1)3310111010010311011100001rrr(2)解:原式=5514000100200275(1)51(1)036036941011410115=130352(1)10(01043)120410(3)解:原式=1213142112312311(1)359(1)(1)3293(1)32581752418252212215(4)解:原式=342312222222222222(1)22222222(1)(1)222222221234213243543243546543546576rrr=14916149163579357905791122227911132222(5)解:原式=123123124561333100257893332.4(1)解:原式=2()12()2()12()1xyyxyyxyxyxyxxyxyxxyxyxy=12()02()10yxyxyxyxyxyxyxxyx=22332()()2()xyxxyyxy(2)解:原式=14101(1)00abcbacbacbacbaccaabbccaabbcbcabca=1()11abcabcbccaabbccababcabbcabcaca=21()0()()()()0bcabcabbcabcabacbccbac=3333abcabc(3)解:原式2143(1)(1)0011001111111100001111111111rrxxxxxyyyyy=22111111111100110000110011yxyxxyyxxy2.5(1)证:将左端行列式的底2,3列加到第一列,则第一列元素全为零,由行列式性质,得证。(2)证:左式21211111111()2222222222233333333(1)(1)(1)(1)cxaxaxbcaaxbcaxaxbcxaaxbcaxaxbcaaxbc12111()2222333(1)cxabcxabcabc右式(3)证:左式=2222222211111111111111111111aaaaaabbbbbbccccccdddddd=222222221111111111110111111111111aaaaaabbbbbbabcdccccccdddddd由已2。6证:由已知条件及矩阵,行列式的性质可知:()AIAAAAIAIAAI,移项即得0AI2.7解:由112233441234864,,,2,2,2,7ABaaaaaaaa=1234864222,,,,77aaaaA即得7A2.8(1)证:由kAO,得0,kkAAO即0A,亦即A不可逆。(2)证:由21()(...)kkIAIAAAIAIOI=1(....)()kIAAIA即知121()...kIAIAAA2.9证:当阶数为1,2时,命题显然成立。假设对阶数小于等于1n时命题也成立,则当阶数为n时,将nD按第n行展开,即得122cosnnnDaDD,由归纳假设,得2coscos(1)cos(2)cos(1)cos(1)cos(2)cosnDananaananaanana2.10(1)解:将第3行的(1)倍分别加到其余各行后,再按第3列展开,得原式=21133!(3)!23nn(2)解:将第2,3....n列全加到第一列,提取公因子后,再从第2行起,每行乘以(1)加到上一行,直至第n行为止,得11100111110010(21)(21)111010011111111nnnnnnDnnnn=(1)(2)1112011010(21)(1)(1)(1)(21)(1)100nnnnnnnnnnnn=(1)12(1)(21)(1)nnnnn(3)解法1:将nD按第一列展开后,即得12()nnnDaDaD。亦即211223()()...nnnnnnDDaDDaDD=22211()(())nnnaaDDaaaaa,再由递推公式,将上述1n个等式相加及1Da,即得1221....nnnnnnDaaaa解法2:12112232223212221nnnnnnnnnnnnDDaDDaDDaDDa110111111naaaaaaaaDaaaa=111111naaaaaDaa=110111naaaaDaa=111111nnaaaaDaa=...=11111nnaaDaa=1nnaD再由递推公式1nnnDaD,即得11....nnnnnDaaa2.11(1)解:将第2n行与其上各行逐次交换至第2行,再将第2n列与其前各列逐次交换至第2列,得222nnabcdababDDabcdcdcd=22()nadbcD=21242()...()()nnnadbcDadbcDadbc(2)解:将第一行乘(1)加到以下各行,再将第2,3,....n列加到第一列,得222122121111011011ninninaaaaaaD=211niia2.12解:由311,9AA及11,AAA得1131()1271221129817AAAAAAA2.13解:由111,33AAAA及319,AA得1119AAOAAAAAAOA2.14解:先求各个元素的代数余子式,112131112131433737(1)29,(1)55,(1)19727243AAA1222321323335,23,17,26,2,10AAAAAA故1121311222321323332955195231726210AAAAAAAAAA又196,A及11AAA,得129551915231719626210A2.15解:依题意,可设2()fxaxbxc,则有04239328abcabcabc系数行列式11142120931D,由克拉默法则知上述方程组有唯一解,且由12301110111032140,43160,42320283192819328DDD知3122,3,1DDDabcDDD,故2()231fxxx2.16解:由克拉默法则知方程组有唯一解的充分必要条件是系数行列式不等于零,即2221110abcabc,再由范德蒙德行列式知222111()()()abcbacacbabc故只有当,,abc互不相等时,方程组有唯一解,且解为()()()()()(),,()()()()()()bdcddacddadbxyzbacabacbcacb2.17(1)解:依题意,有,AA即有,AA再由31AA及AA得(1)0,AA再由2222111112121313111213(1)1AaAaAaAaaa知,必有1A(2)解:由(1)可知12130,0,aa及AA,所以在1Axe的两端同时左乘A,得1AAxAe,即111213,,1,0,0,AIxaaa亦即1,0,0x2.18解:由克拉默法则作用在齐次线性方程组上的逆否命题知,若要方程组有非零解,则必须有系数行列式等于零,即11110121,而111111111(1)1112100,故只需0或1时,齐次方程组即有非零解。
本文标题:华东理工大学线性代数习题答案-第二章
链接地址:https://www.777doc.com/doc-2642927 .html