您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 传感器与检测技术综合实验有数据及答案
实验报告本课程名称:传感器与检测技术综合实验指导教师:班级:姓名:学号:2013~2014学年第一学期广东石油化工学院计算机与电子信息学院实验目录实验一金属箔式应变片――单臂电桥性能实验实验二金属箔式应变片――半桥性能实验实验三金属箔式应变片――全桥性能实验实验四金属箔式应变片单臂、半桥、全桥性能比较实验实验五直流激励时线性霍尔传感器的位移特性实验实验六霍尔转速传感器测电机转速实验实验七磁电式转速传感器的测电机转速实验实验八电涡流传感器的位移特性实验实验九光纤传感器的位移特性实验实验十光电转速传感器的转速测量实验实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压Uo1=EKε/4。三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘、砝码、421位数显万用表(自备)。图1应变片单臂电桥性能实验安装、接线示意图四、实验步骤:应变传感器实验模板说明:实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。1、根据图1〔应变式传感器(电子秤传感器)已装于应变传感器模板上。传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4和加热器上。传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。当传感器托盘支点受压时,R1、R3阻值增加,R2、R4阻值减小,可用四位半数显万用进行测量判别。常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。〕安装接线。2、放大器输出调零:将图1实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi=0);调节放大器的增益电位器RW3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。3、应变片单臂电桥实验:拆去放大器输入端口的短接线,将暂时脱开的引线复原(见图1接线图)。调节实验模板上的桥路平衡电位器RW1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500g)砝码加完。记下实验结果填入表1画出实验曲线。表1重量(g)20406080100120140160180200电压(mv)-3-4-6-8-10-11-13-15-16-184、根据表1计算系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)和非线性误差δ,δ=Δm/yFS×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:yFS满量程输出平均值,此处为200g(或500g)。实验完毕,关闭电源。五、思考题:单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。实验二金属箔式应变片—半桥性能实验一、实验目的:比较半桥与单臂电桥的不同性能、了解其特点。二、基本原理:不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压UO2=EKε/2。三、需用器件与单元:主机箱、应变式传感器实验模板、托盘、砝码。四、实验步骤:1、将托盘安装到应变传感器的托盘支点上。将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(Vi=0);调节放大器的增益电位器RW3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。图2应变式传感器半桥接线图2、拆去放大器输入端口的短接线,根据图2接线。注意R2应和R3受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。调节实验模板上的桥路平衡电位器RW1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500g)砝码加完。记下实验数据填入表2画出实验曲线,计算灵敏度S2=U/W,非线性误差δ。实验完毕,关闭电源。表2重量20406080100120140160180200电压-4-8-11-15-18-21-25-28-32-35三、思考题:1、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边(2)邻边。2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性的(3)调零值不是真正为零。实验三金属箔式应变片—全桥性能实验一、实验目的:了解全桥测量电路的优点。二、基本原理:全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。三、需用器件和单元:同实验二。四、实验步骤:1、将托盘安装到应变传感器的托盘支点上。将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(Vi=0);调节放大器的增益电位器RW3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。图3—1全桥性能实验接线图2、拆去放大器输入端口的短接线,根据图3—1接线。实验方法与实验二相同,将实验数据填入表3画出实验曲线;进行灵敏度和非线性误差计算。实验完毕,关闭电源。表3重量20406080100120140160180200电压-3-8-13-18-23-28-33-38-43-48五、思考题:1、测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。2某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如图3—2,如何利用这四片应变片组成电桥,是否需要外加电阻。图3-2应变式传感器受拉时传感器圆周面展开图实验四磁电式转速传感器测速实验一、实验目的:了解磁电式测量转速的原理。二、基本原理:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N个磁棒时,每转一周线圈感应电势产生N次的变化,通过放大、整形和计数等电路即可以测量转速。三、需用器件与单元:主机箱、磁电式传感器、转动源。四、实验步骤:图17磁电转速传感器实验安装、接线示意图磁电式转速传感器测速实验除了传感器不用接电源外,其它完全与实验十六相同;请按图17和实验十六中的实验步骤做实验。实验完毕,关闭电源。表14V(mm)7.648.669.6910.6511.6912.7113.7114.7115.7016.72n(r/min)1490188018951930236025902750293030953225五、思考题:为什么磁电式转速传感器不能测很低速的转动,能说明理由吗?dtdNe实验五直流激励时霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。二、基本原理:根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。三、需用器件与单元:主机箱、霍尔传感器实验模板、霍尔传感器、测微头。四、实验步骤:1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出VO1接主机箱电压表的Vin),将主机箱上的电压表量程(显示选择)开关打到2v档。2、检查接线无误后,开启电源,调节测微头使霍尔片处在两磁钢的中间位置,再调节RW1使数显表指示为零。图14霍尔传感器(直流激励)位移实验接线示意图3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数(建议做4mm位移),将读数填入表14。表14X(mm)4.03.83.63.43.23.02.82.62.42.2V(mv)-1-0.8-0.4-0.2-0.200.20.40.70.9作出V-X曲线,计算不同测量范围时的灵敏度和非线性误差。实验完毕,关闭电源。五、思考题:本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?实验六霍尔测速实验一、实验目的:了解霍尔转速传感器的应用。二、基本原理:利用霍尔效应表达式:UH=KHIB,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。三、需用器件与单元:主机箱、霍尔转速传感器、转动源。四、实验步骤:1、根据图16将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。图16霍尔转速传感器实验安装、接线示意图2、首先在接线以前,合上主机箱电源开关,将主机箱中的转速调节电源2—24v旋钮调到最小(逆时针方向转到底)后接入电压表(显示选择打到20v档)监测大约为1.25V;然后关闭主机箱电源,将霍尔转速传感器、转动电源按图16所示分别接到主机箱的相应电源和频率/转速表(转速档)的Fin上。3、合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变电机电枢电压),观察电机转动及转速表的显示情况。4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的v—n(电机电枢电压与电机转速的关系)特性曲线。实验完毕,关闭电源。表14V(mm)9.1610.2411.1012.1013.3414.2815.0616.1317.0518.19n(r/min)65086010251205143516101765195021102315作出V-X曲线,计算不同测量范围时的灵敏度和非线性误差。实验完毕,关闭电源。三、思考题:1、利用霍尔元件测转速,在测量上有否限制?2、本实验装置上用了六只磁钢,能否用一只磁钢?实验七电涡流传感器位移实验一、实验目的:了解电涡流传感器测量位移的工作原理和特性。二、基本原理:通过交变电流的线圈产生交变磁场,当金属体处在交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流。涡流的大小与金属导体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属体表面的距离x等参数有关。电涡流的产生必然要消耗一部分磁场能量,从而改变激磁线线圈阻抗,涡流传感器就是基于这种涡流效应制成的。电涡流工作在非接触状态(线圈与金属体表面不接触),当线圈与金属体表面的距离x以外的所有参数一定时可以进行位移测量。三、需用器件与单元:主机箱、电涡流传感器实验模板、电涡流传感器、测微头、被测体(铁圆片)。四、实验步骤:1、观察传感器结构,这是一个平绕线圈。测微头的读数与使用可参阅实验九;根据图19安装测微头、被测体、电涡流传感器并接线。图19电涡流传感器安装、按线示意图2、调节测微头使被测体与传感器端部接触,将电压表显示选择开关切换到20V档,检查接线无误后开启主机箱电源开关,
本文标题:传感器与检测技术综合实验有数据及答案
链接地址:https://www.777doc.com/doc-2705958 .html