您好,欢迎访问三七文档
tmSeriesFROMNEURONTONETWORK:MEASUREMENT,ANALYSISANDMODELINGPart5:ModelsandsimulationtoolsofbiologicalneuronsandnetworksKunoWyler,DanielStainhauser,RolandE.Best,HendrikusW.G.M.BoddekeMay22,1996AbstractThe rstfourpartsofthisseriesgaveanintroductiontomethodsofmeasuringandanalysisofsignalsinbiologicalneuralnetworks.Theremainingtwopartswillconsideraspectsofmethodsinneuronalmodeling.Part5willreviewdi erentlevelsofmodelingandwillgiveasurveyofappropriatesimulationtools.Finally,part6willshowinatutorialsectionanimplementationofamodelinMatlab/Simulinkandatypicalapplicationofit.1IntroductionInthelastdecadecomputermodelingandsimulationhasbecomeamoreandmoreimportanttoolinneuroscience.Thetraditionalexperimentationcycleformedbyaniterationbetweenhypothesis(theory)andexperiment(measurementandanalysis)hasbeenreplacedbyanewcyclethatincludescomputationalmodeling(simulationoftheory).Thisdevelopmenthasledtotheemergenceofanewsubdiscipline‘computationalneuroscience’betweenneuroscienceandcomputerscience(see[1]).Thegoalofcomputationalneuroscienceistodevelopmodelsdescribinghowthenervoussystemorsomepartofitisoperatingondi erentsystemlevelsandthereforetoprovideaninterfacebetweenexperimentalandtheoreticalworkinneuroscience.Forfurtherreadingthefollowingbooksarerecommended:MethodsinNeuronalModeling[2],FoundationsofCellularNeurophysiology[3],HandbookofBrainTheoryandNeuralNetworks[4],andNeuralandBrainModeling[5].Onemajorproblemneuralmodelersarefacedwithistochoosetheappropriatecomplexityofthemodel.Howmuchdetailshadtobeincludedintoamodeltosimulateaccuratelyabiologicalexperimenttoanswerthequestionsasked?Thereisawiderangeofchoiceinmodelcomplexity,fromverysimplepointmodelsofaneurontoverycomplexmodelslikecompartmentalmodelsthatincludedetailedanatomicalandphysiologicaldataofanervecell.Whichmodeltochoosedependsonhowmuchinformationisavailableoftheneuronunderconsiderationandwhatquestionsshouldbeaddressedbythesimulations.Ontheonehand,themodelermaybelimitedbytheavailableexperimentaldataandhastomakereasonableguessesinstead,ontheotherhandverycomplexmodelscaneitherrunintocomputationallimitationsorbeartheproblemoftoomanyfreeparameters(degreesoffreedom)whichwill tanygivensetofdata.Usuallyonelooksforthesimplestmodelthatiscapabletoexplainortoreproducethemeasuredexperimentaldata(principleofOccam’sRazor1).1Thesimplestexplanationofanobservedphenomenaismostlikelytobethecorrectone.1Thisarticlereviewsinsection2themostpopularmodelsofdi erentcomplexityformodelingsinglenervecells,whichareusedasbasicbuildingblockstoconstructnetworks.Anexampleofsuchanetworktostudyactivitypatternsinthespinalcordofaswimminglamprey(eel-like sh)isdescribedinsection3.Finally,section4beginswithsomeremarksonnumericalintegrationmethodstypicallyusedbysimulationprogramsforneuronalmodelingandendswithasummaryofavailableprogrampackagestosimulatemodelsofarbitrarycomplexity.2ModelsofsinglecellsFromaconceptualpointofviewallmodelsofsinglecellssharetwofeaturesincommon:(1)theyprocessmanyinputs(excitatoryandinhibitory)toproduceasingleoutputand(2)theyhaveatleastoneinternalstatevariableusuallycorrespondingtothemembranepotentialofthecell,whichwillbeincreasedbyexcitatoryinputsanddecreasedbyinhibitoryinputs.2.1Single-pointmodelsThesimplestmodelsofaneuronaresocalledsingle-pointmodels.Theydonottakeintoaccounttheanatomyofthecellbutonlyitstopologicalconnectivitywithothercells.ThephysiologyofthecellisrepresentedbyasinglestatevariableV(membranepotential).Thusmorphologyandphysiologyofthecellisreducedintoasingle’point’(hencethename’single-point’models).Thesetypesofneuronmodelsarealsousedtobuild’arti cialneuralnetworks’(ANN’s[6])andthedynamicsaretypicallydiscreteintime(synchronousandasynchronousoperationmodes).IftimeisconsideredtobediscretethemembranepotentialVj(t+1)ofacelljattimet+1isgivenbytheweightedsumoftheoutputsignalsxi(t)ofthepre-synapticcellsi,Vj(t+1)=nXi=1wjixi(t):(1)Thepost-synapticpotentialofthecelljevokedbyasynapticreleaseofthecelliiscontrolledbyreal-valuedcoe cientswji.Forpositivevaluesofwjitherewillbeexcitatorypost-synapticpoten-tials(EPSP’s)andfornegativevaluestherewillbeinhibitorypost-synapticpotentials(IPSP’s).Thee ectiveactivitylevelxjofacelljdependsonitsactualpotentialVjandismodeledbyacharacteristicoutputfunctionf(Vj).2.1.1LinearmodelsThemostsimplest(andprobablyleastrealistic)neuronmodelisachievedwhenfissettosomelinearfunction,e.g.theidentityfunctionf(V)=V:xj(t+1)=f(Vj(t+1))=Vj(t+1):(2)Theoutputofacellisalinearcombinationofallofitssynapticinputs.Theadvantageofsuchlinearmodelsisthatnetworksmadeofthesecellscanbeanalyzedbyusingmethodsoflinearalgebra.Butunliketorealneurons,outputsoflinearneuronscanbecomearbitrarilylarge(positiveandnegativevalues).2.1.2NonlinearmodelsTheproblemofunboundedoutputsofacellcanbehandledbyreplacingthelinearfunctionbysomenonlinearfunctionwithupperandlowerbounds.Ofcoursetheresultingmodelswillthen2benonlinearandtheanalysisofnetworksbecomesmoredi cult.Oneofthemostpopularsingle-pointmodelofneuronsistheoneintroducedbyMcCulloch-Pitts[7].TheirmodelisbasedonasteporHeavisidefunctionH(=f)H(V
本文标题:tm Series FROM NEURON TO NETWORK MEASUREMENT, ANAL
链接地址:https://www.777doc.com/doc-3153466 .html