您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 光纤通信刘增基版第七章(1)
7.1光放大器7.2光波分复用技术7.3光交换技术7.4光孤子通信7.5相干光通信技术7.6光时分复用技术7.7波长变换技术第7章光纤通信新技术返回主目录第7章光纤通信新技术光纤通信发展的目标是提高通信能力和通信质量,降低价格,满足社会需要。进入20世纪90年代以后,光纤通信成为一个发展迅速、技术更新快、新技术不断涌现的领域。本章主要介绍一些已经实用化或者有重要应用前景的新技术,如光放大技术,光波分复用技术,光交换技术,光孤子通信,相干光通信,光时分复用技术,波长变换技术和无源光网络(PON)技术(第8章)等等。7.1光放大器7.1.1光放大器概述7.1.2掺铒光纤放大器EDFA7.1.3半导体光放大器SOA7.1.4光纤拉曼放大器FRA7.1.1光放大器概述7.1.1光放大器概述7.1.1光放大器概述光放大器的出现,可视为光纤通信发展史上的重要里程碑。光放大器出现之前,光纤通信的中继器采用光-电-光(O-E-O)变换方式。装置复杂、耗能多、不能同时放大多个波长信道,在WDM系统中复杂性和成本倍增。可实现3R中继。3Rregenerator:Reamplifier、Reshaping、Retiming。光放大器(O-O)多波长同时放大、低成本,只能实现1R中继。光放大器的重要性影响:光放大器最重要的意义在于促使波分复用技术(WDM)走向实用化、促进了光接入网的实用化历史:以1985年英国南安普顿大学首先研制成功的掺铒光纤放大器(ErbiumDopedFiberAmplifier,EDFA)代表的全光放大技术是光纤通信技术上的一次革命动机:解决电中继器设备复杂、维护难、成本高的问题DavidPayne光放大器的重要性TDM系统RXEDFATXTXTXTXTXTXTXTXRXRXRXRXRXRXRX120km120km120kmDWDM系统EDFATXRXRegReg120km120km120kmTXRXRegRegTXRXRegRegTXRXRegRegTXRXRegRegTXRXRegRegTXRXRegRegTXRXRegRegTXRXRegRegTXRXRegRegTXRXRegRegEDFA在DWDM系统中的应用光放大器的原理光放大器的功能:提供光信号增益,以补偿光信号的传输衰减,增大系统的无中继传输距离。在泵浦能量(电或光)的作用下,实现粒子数反转(非线性光纤放大器除外),然后通过受激辐射实现对入射光的放大。光放大器是基于受激辐射(或受激散射)原理实现对入射光信号放大的一种器件。其机制与激光器完全相同。实际上,光放大器在结构上是一个没有反馈或反馈较小的激光器。光放大器与激光器的唯一区别就是光放大器没有正反馈机制光放大器的类型利用稀土掺杂的光纤放大器(EDFA、PDFA)利用半导体制作的半导体光放大器(SOA)利用光纤非线性效应制作的非线性光纤放大器(FRA、FBA)EDFASOA(FBA:FiberBrillouinAmplifier)几种光放大器的比较放大器类型原理激励方式工作长度噪声特性与光纤耦合与光偏振关系稳定性掺稀土光纤放大器粒子数反转光数米到数十米好容易无好半导体光放大器粒子数反转电100m~1mm差很难大差光纤(喇曼)放大器光学非线性(喇曼)效应光数千米好容易大好光放大器的应用线路放大(In-line):周期性补偿各段光纤损耗功率放大(Boost):增加入纤功率,延长传输距离前置预放大(Pre-Amplify):提高接收灵敏度局域网的功率放大器:补偿分配损耗,增大网络节点数研究新热点展宽带宽:C-band40nm,L-band再加40nm;均衡功能:针对点对点系统的增益均衡,针对全光网的功率均衡;监控管理功能:在线放大器,全光网路由改变;动态响应特性;其它波段的光纤放大器,如Raman放大器。光纤的波段当前使用的单模石英光纤,如G.652C,G.652D,已经基本消除氢氧根吸收峰,它们的传输带宽,可以从1260nm到1675nm,共有415nm宽度。一般把这415nm宽度划分成O、E、S、C、L、U六个波段,具体划分方法如下;初始(O)波段1260nm-1360nm扩展(E)波段1360nm-1460nm短(S)波段1460nm-1530nm常规(C)波段1530nm-1565nm长(L)波段1565nm-1625nm超长(U)波段1625nm-1675nm当前各国光纤通信大都运用在C与L波段,而且仅使用其中的一小部分,还有大部分频率未曾使用。7.1光放大器7.1.1光放大器概述7.1.2掺铒光纤放大器EDFA7.1.3半导体光放大器SOA7.1.4光纤拉曼放大器FRA7.1.2掺铒光纤放大器EDFA掺杂光纤放大器利用掺入石英光纤的稀土离子作为增益介质,在泵浦光的激发下实现光信号的放大,放大器的特性主要由掺杂元素决定。工作波长为1550nm的铒(Er)掺杂光纤放大器(EDFA)工作波长为1300nm的镨(Pr)掺杂光纤放大器(PDFA)工作波长为1400nm的铥(Tm)掺杂光纤放大器(TDFA)目前,EDFA最为成熟,是光纤通信系统必备器件。掺铒光纤放大器给光纤通信领域带来的革命EDFA解决了系统容量提高的最大的限制—光损耗补偿了光纤本身的损耗,使长距离传输成为可能大大增加了功率预算的冗余,系统中引入各种新型光器件成为可能支持了最有效的增加光通信容量的方式—WDM推动了全光网络的研究开发热潮为什么要用掺铒光纤放大器工作频带正处于光纤损耗最低处(1525-1565nm);频带宽,可以对多路信号同时放大—支持波分复用;对数据率/格式透明,系统升级成本低;增益高(40dB)、输出功率大(~30dBm)、噪声低(4~5dB);全光纤结构,与光纤系统兼容;增益与信号偏振态无关,故稳定性好;所需的泵浦功率低(数十毫瓦)。EDFA的优点EDFA的工作原理EDFA采用掺铒离子单模光纤为增益介质,在泵浦光作用下产生粒子数反转,在信号光诱导下实现受激辐射放大。Inputsignal1530nm-1570nmAmplifiedoutputsignalPowerlaser(Pump)980nmor1480nmFibercontainingerbiumdopant信号光与波长较其为短的光波(泵浦光)同沿光纤传输,泵浦光的能量被光纤中的稀土元素离子吸收而使其跃迁至更高能级,并可通过能级间的受激发射转移为信号光的能量。信号光沿光纤长度得到放大,泵浦光沿光纤长度不断衰减。EDFA中的Er3+能级结构泵浦波长可以是520、650、800、980、1480nm波长短于980nm的泵浦效率低,因而通常采用980和1480nm泵浦。铒离子简化能级示意图吸收泵浦光快速非辐射跃迁受激辐射光放大自发辐射产生噪声受激吸收基态能带泵浦能带980nm1480nm亚稳态能带1520~1570nm掺铒光纤放大器(EDFA)原理:把泵浦光能量转化为信号光能量工作范围:1300~1560nm铒离子的三能带结构hvhvhvhvhvhvhvhv980nm亚稳态能带泵浦能带快速非辐射跃迁掺铒光纤放大器的基本结构掺铒光纤:当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级上,由于在高能级上的寿命很短,很快以非辐射跃迁形式到较低能级(亚稳态能级)上,并在该能级和低能级间形成粒子数反转分布。半导体泵浦二极管:为信号放大提供足够的能量,使物质达到粒子数反转。波分复用耦合器:将信号光和泵浦光合路进入掺铒光纤中。光隔离器:使光传输具有单向性,放大器不受发射光影响,保证稳定工作。三种泵浦方式的EDFALD2WDM2EDFAPCAPCinoutLD1WDM1LDWDMEDFAPCAPCinoutLDWDMEDFAPCAPCinout同向泵浦(前向泵浦)型:好的噪声性能反向泵浦(后向泵浦)型:输出信号功率高双向泵浦型:输出信号功率比单泵浦源高3dB,且放大特性与信号传输方向无关MultistageEDFA由于光纤对1480nm的光损耗较小,所以1480nm泵浦光又常用于遥泵方式。RemotePumping监视和告警电路泵浦监视和控制电路泵浦LDPD探测器泵浦LD输入隔离器输入WDM输出耦合器输出隔离器输出WDM掺铒光纤热沉光输入+5V0V-5V电源监视激光器驱动输入光输出图7.3(b)实用光纤放大器构成方框图EDFA的工作特性光放大器的增益光放大器的噪声EDFA的多信道放大特性EDFA的大功率化一、光放大器的增益增益G是描述光放大器对信号放大能力的参数。定义为:G与光放大器的泵浦功率、掺杂光纤的参数和输入光信号有很复杂的关系。insoutsPPdBG,,10log10)(输出信号光功率输入信号光功率增益G与输入光信号功率的关系输入光功率较小时,G是一常数(30dB),即输出光功率PS,OUT与输入光功率PS,IN成正比例。G0为光放大器的小信号增益。G0饱和输出功率:放大器增益降至小信号增益一半时的输出功率。3dBPout,sat当PS,IN增大到一定值后,光放大器的增益G开始快速下降。增益饱和现象。饱和区域增益G与输入光波长的关系增益谱G():增益G与信号光波长的关系。光放大器的增益谱不平坦。对于给定的放大器长度(EDF长度),增益随泵浦功率在开始时按指数增加,当泵浦功率超过一定值时,增益增加变缓,并趋于一恒定值。小信号增益随泵浦功率而变的曲线小信号增益随放大器长度而变的曲线当泵浦功率一定时,放大器在某一最佳长度时获得最大增益,如果放大器长度超过此值,由于泵浦的消耗,最佳点后的掺铒光纤不能受到足够泵浦,而且要吸收已放大的信号能量,导致增益很快下降。因此,在EDFA设计中,需要在掺铒光纤结构参数的基础上,选择合适的泵浦功率和光纤长度,使放大器工作于最佳状态。二、放大器的噪声所有光放大器在放大过程中都会把自发辐射(或散射)叠加到信号光上,导致被放大信号的信噪比(SNR)下降,其降低程度通常用噪声指数Fn来表示,其定义为:主要噪声源:放大的自发辐射噪声(ASE),它源于放大器介质中电子空穴对的自发复合。自发复合导致宽谱背景噪声。outinnSNRSNRF)()(ASE:AmplifiedSpontaneousEmissionEDFA放大1540nm波长信号时产生的影响ASE噪声叠加在信号上,导致信噪比下降。宽谱光源ASE噪声nsnsnsoptPDEEEEEEPi2222信号光和ASE噪声一同输入到光检测器中进行检测,各种频率分量相互拍频:因此,在PD之后,ASE带来的噪声包括:-ASE噪声项-ASE与信号的拍频项它们落在检测器带宽内降低接收机的信噪比解决办法:通过一个带通滤波器抑制ASE噪声功率三、EDFA的多信道放大特性EDFA的增益恢复时间g~10ms(SOA的g=0.1~1ns),其增益不能响应调制信号的快速变化,四波混频效应也很小,所以在多信道放大中不引入信道间串扰(SOA则不然),是其能够用于多信道放大的关键所在。EDFA对信道的插入、分出或无光故障等因素引起的输入光功率的变化(较低速变化)能产生响应--瞬态特性。在系统应用中应予以控制--增益钳制。•多信道放大中存在的其它问题:增益平坦增益钳制高的输出功率EDFA的级联特性信道间增益竞争,多级级连使用导致“尖峰效应”15441569典型的EDFA增益谱固有的增益不平坦,增益差随级联放大而积累增大各信道的信噪比差别增大各信道的接收灵敏度不同增益平坦增益谱的形状随信号功率而变,在有信道插入、分出的动态情况下,失衡情况更加严重BER接收光功率光功率波长光功率波长光发射机光发射机光发射机光发射机N123光接收机光接收机光接收机光接收机EDFA1N321.滤波器均衡:采用透射谱与掺杂光纤增益谱反对称的滤波器使增益平坦,如:薄膜滤波、紫外写入长周期光纤光栅、周期调制的双芯光纤等。只能实现静态增益谱的平坦,在信道功率突变时增益谱仍会发生变化。EDF
本文标题:光纤通信刘增基版第七章(1)
链接地址:https://www.777doc.com/doc-3162445 .html