您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 交通运输 > 城市轨道交通列车运行过程仿真系统研究报告
城市轨道交通列车运行过程仿真系统研究报告1概述1.1研究的背景与意义随着城市化进程的加快和城市人口的急剧膨胀,公共交通被认为是未来交通的主要形式。尤其是城市轨道交通,被认为是公共交通系统的骨架。但是,限于国情,目前我国的城市轨道交通基本上靠引进国外设备与技术,自主研发能力薄弱。所以,对列车的运行过程及其相关问题的研究,可以发现列车运行过程中的影响因素,有助于提高列车控制水平,节约能耗,提高运行正点率,减少停站误差,增加乘客舒适度等一系列问题。本课题的研究涉及列车牵引计算、运行仿真控制优化等一系列问题,属于多学科领域的交叉问题。列车运行过程的仿真,既是计算运行时分,验算制动能力的研究范畴,也是降低能耗、提高运营安全性、提供正点率等服务水平的核心问题。而且,单列车运行过程仿真基础上的列车群的运行过程仿真对于缩小列车运行间隔,提高行车密度,提高通过能力,降低运行成本,分析突发事件下的列车运行延误影响程度等方面都具有重要意义。总之,对于城市轨道交通列车运行过程的研究,可以优化列车控制,降低列车能耗,提高服务水平等方面均具有重要的理论意义和实际价值。1.2研究目的对列车运行过程的仿真研究,主要目的有以下几个方面:计算不同编组条件,不同运输组织方案下的列车运行时分计算线路的接近实际通过能力计算合理的列车运行间隔时间分析列车群运行过程中的相互影响关系,从而提高列车控制水平分析突发事件下的列车运行延误影响程度1.3研究方法由于列车的运行过程是一个非常复杂的非线性动力学系统,受到线路和列车等多种因素的影响。因此,采用计算机仿真的方法来解决问题,同时结合一些控制优化方法。2单列车运行过程仿真研究2.1概述由于城市轨道交通系统大多采用国外设备成套进口的办法,使得国内对城市轨道交通运行仿真的研究相对滞后,缺乏相关的城市轨道交通技术规范。《牵规》是城际铁路的牵引计算国家规范,对于城市轨道交通中的列车牵引计算问题并无涉及。所以,本系统一方面参考《牵规》的计算方法,另一方面,在借鉴前人的经验和研究基础上,采用适合城市轨道交通列车运行的计算方法。因此,主要针对以下几个方面进行研究:城市轨道交通列车牵引计算分析列车运行过程的计算方法2.2单质点列车模型因为城市轨道交通的列车编组一般是4-8辆,每列车在出厂时,已经按照预定编组进行组装并交付使用,在运行过程中,列车的编组一般不再变化,所以,可以假定每列车是一个质量集中的质点,通过对该质点的受力分析来分析列车的运动规律,如图1所示。图1列车受力分析列车受到的外力全部作用在质点上,主要包括:牵引力基本阻力由于曲线、坡道和隧道等产生的附加阻力制动力列车自身的重力线路对列车的支持力在城市轨道交通列车牵引计算中,前四种力是影响列车运行的基本力,由他们矢量叠加产生的合力,是推动列车运行状态不断变化的源泉。列车的部分重力构成了坡道的附加阻力,另一部分通过轮轨之间的形变转化为列车的基本阻力,而线路的支持力则与列车重力以及列车运行时的竖向冲击力构成一对平衡力,使得列车在竖直方向上存在很小的震动。但是,研究列车的运行过程主要是研究列车在水平方向上的运动规律,所以可以忽略列车在竖向上的受力变化。2.3城市轨道交通列车牵引计算分析影响列车运行过程的外力主要有:牵引力基本阻力附加阻力制动力这四方面的外力的研究和计算是分析列车运行过程的重要基础。2.3.1牵引力由列车中的动车产生,是列车前进的动力。动车组牵引力的大小不但取决于动车的功率,机械传动效率,还取决于列车的运行速度,列车运行工况,以及列车动轮与轨道间的摩擦系数等因素。牵引计算中,牵引力的取值一般来自动车组的牵引特性数据。根据当前的速度,可以计算得到当前列车的牵引力数值。牵引力与速度的关系可用下式表示:)(vfFqy式中,Fqy是当前列车的牵引力,v是当前速度。列车的牵引特性曲线是车辆生产厂家给出的,有的以单电机特性曲线的形式给出,有的以牵引单元的形式给出,不同于城际铁路机车的牵引特性曲线。如图2、3、4所示,为上海地铁2号线8节编组的Alstom车辆的牵引特性曲线。ShanghaiLine2MotoringCharacteristics1500VDC,8cars,Wheeldiam.805mm,Gearratio6,9423:1-AW005000010000015000020000025000030000035000040000001020304050607080Speed(km/h)Effort(N)0.0000.2000.4000.6000.8001.0001.200Acceleration(m/s²)F[N]Rav0%Accel.[m/s²]图2上海地铁2号线列车空载时的牵引特性曲线ShanghaiLine2MotoringCharacteristics1500VDC,8cars,Wheeldiam.805mm,Gearratio6,9423:1-AW005000010000015000020000025000030000035000040000001020304050607080Speed(km/h)Effort(N)0.0000.2000.4000.6000.8001.0001.200Acceleration(m/s²)F[N]Rav0%Accel.[m/s²]图3上海地铁2号线列车定员时的牵引特性曲线ShanghaiLine2MotoringCharacteristics1500VDC,8cars,Wheeldiam.805mm,Gearratio6,9423:1-AW3010000020000030000040000050000060000001020304050607080Speed(km/h)Effort(N)0.0000.2000.4000.6000.8001.0001.200Acceleration(m/s²)F[N]Rav0%Accel.[m/s²]图4上海地铁2号线列车满载时的牵引特性曲线假设点(v1,w1)和(v2,w2)是牵引特性曲线上已知的两点,点(vx,wx)在两点之间,速度vx已知,求牵引力的大小wx。这里采用线性插值法来求该点的牵引力,如下公式:121x121x)vv()ww(wwvv--+=单位重量的牵引力为:Mgwwxx1000'式中,Mg是列车的重量,'xw是单位重量的列车牵引力(N/KN)。2.3.2基本阻力列车运行过程中,由于机械摩擦、空气摩擦等因素的作用,产生的固有阻力称为列车的基本阻力。基本阻力中有些因素是不能通过定量的公式来计算,因此,一般通过大量的试验确定针对不同车型和编组的经验公式来近似表达列车的基本阻力。根据《牵规》,列车基本阻力的计算公式为:20cvbvaw式中,a、b、c为与车辆有关的经验常数。《牵规》只给出了普通列车的基本阻力计算公式,并无适合城市轨道交通列车的运行阻力计算公式。这要根据计算需要,针对不同的动车与列车编组,从特定厂家查定这些数据。2.3.3附加阻力附加阻力是由于线路平纵断面变化或者隧道以及其他原因产生的,分为坡度附加阻力、曲线附加阻力以及隧道附加阻力。坡度附加阻力的产生是由于列车在坡道上运行时,其重力在沿下坡道方向的分力引起的。坡道附加阻力的计算根据《牵规》规定,采用坡度千分数近似表示计算坡度的单位附加阻力:iMgWwiitan1000sin10001000曲线附加阻力的产生是因为列车在曲线上运动时,部分车轮轮缘接触钢轨产生摩擦,部分车轮在转动的同时伴随着纵向和横向的滑动摩擦,以及转向架心盘和旁承的摩擦都要加剧,于是发生了曲线附加阻力。曲线附加阻力和曲线半径、列车速度、曲线外轨超高以及轨距加宽等许多因素有关,很难用理论方法推导其解法。所以,一般采用经验公式来计算,如下为一般形式:RAwr式中,A是经验常数,根据《牵规》规定,我国标准轨距的曲线附加单位阻力的计算采用的A=600,R是曲线半径。隧道附加阻力是隧道空气附加阻力。隧道空气附加阻力与隧道长度、隧道截面积、列车截面积、列车外形等因素有关。隧道越长,隧道附加阻力就越大,列车越长、速度越高,隧道附加阻力也越大。当前,理论上计算隧道附加阻力尚不成熟,通常采用经验公式或试验数据来代替,如下公式:ssLw00013.0式中,sL是隧道长度(m)。因此,一般情况下,附加阻力的计算采用下式:srifz式中,fzw为线路附加阻力。2.3.4制动力制动力是控制列车运行的人为施加的阻力。通常由列车上安装的制动装置产生。制动力的大小与列车运行速度、制动方式等因素相关。一般地,列车确定后,制动力的计算仅与当前速度有关,即)(vgFzd目前,城市轨道交通中的制动方式普遍采用的是电空配合制动形式,其制动特性在低速时,由于空气制动的补偿,显著改善了电制动的特性。更确切地说,是电空混合制动特性弥补了单一电制动特性的不足,一般地,电空混合制动特性曲线如图5所示。ShanghaiLine2BrakingCharacteristics1800VDC,8cars,Wheeldiam.805mm,Gearratio6,9423:1-AW005000010000015000020000025000030000035000001020304050607080Speed(km/h)Effort(N)0.0000.2000.4000.6000.8001.0001.200Deceleration(m/s²)F[N]Rav0%Decel.[m/s²]图5上海地铁2号线列车制动特性曲线由于空气制动力的补偿作用,使得地铁列车的制动能力在停站制动初速(5~12Km/h)以后,可以在很长一段速度范围内保持稳定,速度超过一定值以后,电制动受到制动电流的限制而呈现线性下降趋势。在实际的列车运行过程仿真中,一般制动采用电阻制动方式,根据电阻制动特性曲线,或者电空制动混合特性曲线,采取线性插值法计算任意速度的制动力。2.4列车运行过程的计算方法2.4.1列车运行控制策略列车运行控制策略是指列车在一定的牵引算法基础上,根据计算的实际需要对列车在运行过程中的操纵方法进行假定而建立的自动化运行控制仿真模型。本系统主要采用以下两种控制策略:最快速策略要让列车以最少的时间完成运行任务,需要尽可能发挥列车的牵引性能和制动性能,在此种算法下,列车运行的策略是尽可能高速度或者节约时间。因此,牵引时采用最大牵引力,制动时采用最大制动力,达到限速时,以限制速度匀速运行。这一列车运行策略基本上满足了牵引计算的要求,可以用来计算区间运行时分,绘制速度-位移曲线等。最经济策略即采用最节能的方法运行。实践表明,较节能的方法是:加速阶段以最大牵引力加速,中间阶段采用匀速运行和尽可能的惰行,直至最后不需要制动力就可以进站准确停车。如果区间运行时分比较富裕的话,速度越低,列车能耗就越小。另外,运行速度的波动越小,能耗也越小。因此,可以这样设计最经济的列车控制策略:开始采用最大牵引力加速至某一速度,然后维持这个速度匀速运行,最后在某一个位置开始,依靠列车的基本阻力和附加阻力,实现列车的进站停车过程。已知运行时分策略即根据实际的区间运行时分,采用优化算法,使列车在整个区间内的运行时分等于实际的区间运行时分。在研究的第一阶段,以最快速策略的列车运行控制策略为主。2.4.2列车运行过程中的各种工况分析一般地,将列车运行过程分为以下几个阶段:起动过程牵引过程惰性过程匀速过程制动过程进站制动过程为了研究的方便,对其中的一些控制过程进行合并,所以本系统采用将列车运行过程分为以下几个过程:起动过程、加速过程、匀速过程、惰性过程及制动过程。因为城市轨道交通系统列车的起动比较频繁,所以对起动过程进行单独计算(v≤2.5km/h),并将这一速度内的列车运行阻力视为不变的。若起动阻力ewqz(e为起动阻力经验常数),起动过程单位合力计算如下:e(hKmv/5.2))1(1000)1(cgMcMgMCa式中,C
本文标题:城市轨道交通列车运行过程仿真系统研究报告
链接地址:https://www.777doc.com/doc-3325461 .html