您好,欢迎访问三七文档
ACCELERATEDLIFETESTINGMODELBUILDINGWITHBOX-COXTRANSFORMATIONPeihuaQiuChrisP.TsokosSchoolofStatisticsDepartmentofMathematicsUniversityofMinnesotaUniversityofSouthFloridaMinneapolis,MN55455Tampa,FL33620AbstractInacceleratedlifetesting,thenominallifetimeisoftenrelatedtostresslevelsbyanaccel-erationequation.Threeparticularmodelsthathavebeenusedfrequentlyinthepastarethepowerlawmodel,theArrheniusmodelandtheEyringmodel.Inthispaperwesuggestchoosingamodelfromamodelfamilywhichincludesthethreeparticularmodelsasspecialcases.Thisfamilyisde nedbyaBox-Coxtransformationonthestressvariable.Therearetwobene tstousethisproposal:(1)model ttingcouldbetreatedinanuni edway;and(2)the ttedmodelismorerobusttomodelassumptions.Wedemonstratethismethodwithsomenumericalexamples.KeyWords:Acceleratedlifetesting,Accelerationequation,Box-Coxtransformation,Residualsumofsquares.1IntroductionInacceleratedlifetesting,productsaretestedunderhigherthanusuallevelsofstressestoshortenthetestingtimeandtogetmorefailures(Nelson1990;MeekerandEscobar1993).Toestimatelifetimesatnormalstresslevelsbasedontheacceleratedlifetestingdataisaprocessofextrapolation.Thisprocessisoftenaccomplishedbyusingapredeterminedaccelerationequationwhichrelatesthelifetimeofproductstothestresslevels.Threeparticularaccelerationequationsthathavebeenusedfrequentlyinthepastarethepowerlawmodel,theArrheniusmodelandtheEyringmodel(Levenbach1957;Thomas1964).1Thepowerlawmodelhasalinearexpression: =a+b[ log(S)],where =log( ), isthenominallifetime(someparameterofthelifetimedistribution),Sdenotesthestressvariable,aandbarethecoe cients.Thismodelisoftenusedtorelateproductlifetopressure-likestresses(e.g.,voltage).Itisgenerallyviewedasbeinganempiricalmodel,butwithlargeamountsofexperimentalveri cation(seealistofapplicationsofthismodelinSection2.10,Nelson1990).TheArrheniusliferelationship, =a+b=S,iswidelyusedtomodelproductlifeasafunctionoftemperature.Applicationsincludeelectricalinsulationsanddielectrics,batterycells,plastics,etc.Itisa rst-orderapproximationtothefollowingEyringmodel: =log(A) log(S)+B=S,whereAandBareconstants.Inmostapplications,A=Sisessentiallyconstantduetothesmallrangeoftemperature,makingtheEyringmodelclosetotheArrheniusrelationship.Theabovethreemodelshavethefollowingcommonstructure: =a+b (S);(1.1)where ( )issomeprespeci edfunction,aandbarethecoe cients.Intheliterature(e.g.,Chapters4and5,Nelson1990),themodelcoe cientsareoftenestimatedbytheleastsquares(LS)methodandthemaximumlikelihoodestimation(MLE)method.ByusingtheLSmethod, needstobeestimatedfromtheexperimentaldata rstateachstresslevelandthenmodel(1.1)is ttedintheusualway.Model(1.1)isbasedontwoassumptions:(1)thefunction ( )needstobecompletelyspeci ed,and(2)therelationshipbetween and (S)islinear.Ifoneofthesetwoassumptionsisviolatedinaspeci capplication,thenresultsfromtheextrapolationprocedurewillnotbereliable.Thereforeitisemphasizedintheliterature(e.g.,Chapter2,Nelson1990;Chapter18,MeekerandEscobar1998)tofullyunderstandthemechanismoftheapplicationproblemssuchthatappropriatemodelscouldbeidenti edforextrapolation.Itisalsoemphasizedtoverifytheempiricalmodelsovertheentirerangeofthestressvariables.Butitmightnotbeeasytodosoinsomecasesbecausethelifetimeofsomeproductscouldbeextremelylongunderlowstresses.Inthispaper,wemakeanattempttotrytopartiallyovercomethisdi cultybyconsideringamore exiblemodel.Figure1.1demonstratesfourpossiblecases.ThestressSinthesecasesisthetemperatureT.WeconsidersevenTlevels:150oC;200oC;250oC;300oC;350oC;400oCand450oC.Inplot(a),thetruerelationshipbetween and (T)is =38:3+5 (T)+5log( (T))where (T)=1=T.Thelinealityassumptionof(1.1)isviolatedinthiscase.(ItisanArrheniusmodeliftheterm25log( (T))doesnotexist.)The\+pointsinFigure1.1(a)denotef( (Ti);^ i)gwhere^ iisanestimatorof atstresslevelsTi.Thedottedcurverepresentsthetrueregressionmodel.Thedashedlineisthe ttedLSlinebyusingtheArrheniusmodel.Thesolidcurvedenotesthe ttedmodelbyourproposal.Itcanbeseenthatallthreecurves/linesareclosetoeachotherinthedesignrange(Tbetween150oCand450oC).Butwhentheyareusedforextrapolationatnormaltemperaturelevels(say,T 100oC),theirdi erenceisobvious.ExtrapolationresultsfromourproposalareclosetothetruthwhilethosefromtheArrheniusmodelarefarawayfromthetruth.ThisexampleshowsthattheextrapolationprocedureissensitivetothelinealityassumptioniftheArrheniusmodelisusedinstatisticalanalysisandourproposalpartiallyovercomesthisproblem.Plot(b)demonstratesanothercasethatthetruerelationshipbetween and (T)islinear.But (T)equalstolog(T)=T0:6insteadof1=T.Thetruemodelis =3:7+18:5 (T).Weplotf( (Ti);^ i)gby\+pointsasbefore.Thedottedstraightlineisthetrueregressionmodel.Thedashedcurverepresentsthe ttedArrheniusmodel(itdoesnotappeartobestraightinplot(b)becausethescaleusedforthex-axisisbylog(T)=T0:6insteadofbyT).Thesolidcurveisthe ttedmodelbyourproposal.TheextrapolationresultsbyusingtheArrheniusmodeldonotlookgoodinthiscaseeither.Ontheotherhand,ourmethodstillbehavesreasonablywell.Plots(c)and(d)showanothertwocasesrelatedtothepowerlawmodel.Thetruerelationshipbetween andTis =20:3+1500
本文标题:ACCELERATED LIFE TESTING MODEL BUILDING WITH BOX-C
链接地址:https://www.777doc.com/doc-3384170 .html