您好,欢迎访问三七文档
1课程教学大纲汇编专业代码070101专业名称数学与应用数学主编(签名):舒伟仁校对(签名):李宏杰审定(签名):孔祥庆数学与信息科学学院汇编2目录1、《数学分析》教学大纲····················································42、《高等代数与几何》教学大纲············································143、《常微分方程》教学大纲···············································194、《概率论与数理统计》教学大纲···········································225、《复变函数》教学大纲··················································286、《数学物理方程》教学大纲··············································317、《运筹学》教学大纲·····················································348、《实变函数》教学大纲·················································389、《泛函分析》教学大纲···················································4010、《计算方法》教学大纲··················································4211、《数学软件与数学实验》教学大纲·········································4612、《数学建模》教学大纲···················································4913、《微分几何》教学大纲··················································5314、《近世代数》教学大纲··················································5515、《点集拓扑》教学大纲·················································5816、《*分形几何》教学大纲················································6017、《算子理论》教学大纲···················································6218、《代数拓扑》教学大纲··················································6419、《非线性规划》教学大纲·················································6520、《图与网络优化》教学大纲···············································6821、《排序论》教学大纲·····················································7222、《多目标规划》教学大纲·················································7523、《软件工程》教学大纲···················································7824、《计算机密码学》教学大纲···············································8225、《计算机图形学》教学大纲···············································8626、《数据结构》教学大纲···················································8927、《数据库》教学大纲·····················································9628、《电子商务》教学大纲················································10229、《初等数论》教学大纲·················································10830、《教材教法》教学大纲·················································11131、《数学史》教学大纲··················································11632、《应用随机过程》教学大纲··············································11933、《应用回归分析》教学大纲·············································12234、《时间序列分析》教学大纲··············································12735、《西方经济学》教学大纲················································13136、《金融学》教学大纲··················································15437、《投资组合理论》教学大纲··············································16538、《风险管理》教学大纲··················································17039、《利息理论》教学大纲··················································17340、《精算数学》教学大纲·················································176341、《期权与其他金融衍生证券》教学大纲····································17842、《保险学》教学大纲····················································18043、《博弈论》教学大纲····················································18444、《教育学》教学大纲····················································18745、《心理学》教学大纲····················································19146、《认识实习》教学大纲·················································20247、《毕业实习、毕业论文》教学大纲·········································2054《数学分析》教学大纲大纲说明课程代码:4925043总学时:256学时(讲课256学时)总学分:16分课程类别:必修适用专业:数学与应用数学专业(本科)预修要求:初等数学课程性质、目的、任务:《数学分析》数学与应用数学专业最重要的基础课之一,也是该专业学时最长的专业课程,总学时达256学时。这门课不仅是数学与应用数学专业各门后续课程的基础,而且也担负着培养学生的抽象思维能力,正确运用“数学语言”,顺利完成从初等数学到高等数学的过渡,从而为今后更进一步的学习打下基础的重要任务。通过这门课的学习,使同学们不仅能熟练掌握“N语言”和“”语言和微积分学的基本内容与方法,更重要的是通过本门课程及相关课程的学习,使他们受到严格的数学基本训练,提高其数学修养,从而为将来更进一步的学习打下一个良好的基础。课程教学的基本要求:教学要求由低到高分三个层次,有关定义、定理、性质、特征概念的内容为“知道、了解、理解”;有关计算、解法、公式、法则等方法的内容按“会、掌握、熟练掌握”。教学方法和教学手段的建议:以教师讲授为主,学生课堂练习为辅,再适当辅以课件协助教学;通过批改作业动态了解学生的学习状况,对个别的学生课外加以辅导。教师讲授包括习题课(约占总学时的四分之一),根据学生作业情况酌情安排。大纲的使用说明:本大纲参照高等教育出版社出版由复旦大学数学系主编的《数学分析》(第二版)制订,适用数学与应用数学本科专业。大纲正文第一篇极限论教学目的和要求:1、了解数学分析这门课程在整个大学教学计划中的重要作用;2、了解高等数学与初等数学的主要区别;初步掌握大学的学习方法;3、初步掌握“-N语言”和“-语言”;4、初步掌握实数的基本定理及其相互之间的关系,能利用这些;基本定理证明闭区间上连续函数的基本性质。第一部分极限初论第一章变量与函数讲授学时:4学时1、掌握函数的概论及相关性质;了解一般映射的概念,以及函数与映射之间关系。2、掌握六类基本初等函数以及一些常用函数,如符号函数,y=〔X〕等的定义及其性质。3、会求初等函数的定义域。教学内容:§1、函数的概念1、变量2、函数53、几何特性§2、复合函数与反函数1、复合函数2、反函数§3、基本初等函数第二章极限与连续讲授学时:20学时教学目的和要求:1、初步掌握“语言”,“-”语言;2、掌握二个基本极限;3、会利用定义证明极限存在或不存在;4、掌握连续函数的概念,了解不连续点的分类;5、了解无穷大量与无穷小量以及阶的概念。教学内容:§1、数列极限与无穷大量。1、数列极限的定义2、数列极限的性质3、数列极限的运算4、单调有界数列5、无穷大量的定义6、无穷大量的性质和运算§2、函数的极限1、函数在一点的极限2、函数极限的性质和运算3、单侧极限4、函数在无穷运处的极限5、函数值趋于无穷大的情形6、两个基本极限。§3、连续函数的定义1、连续的定义2、连续函数的性质与运算3、初等函数的连续性4、不连续点的类型5、闭区间上连续函数性质§4、无穷小量与无穷大量的阶及阶的比较1、阶的定义2、阶的比较第三部分极限续论第三章关于实数的基本定理及闭区间上连续函数性质的证明讲授学时:14学时教学目的和要求:1、初步掌握实数基本定理及其相互间的关系。2、会利用实数基本定理证明闭区间上的连续函数的性质3、逐步掌握利用“数学语言”来证明问题6§1、关于实数的基本定理1、子列2、上、下确界3、区间套定理4、致密性定理5、Cauchy收敛原理6、Borel有限覆盖定理§2、闭区间上连续函数的性质证明1、有界性定理2、最大(小)值定理3、零点存在性定理4、反函数连续性定理5、一致连续定理第二篇单变量微积分学教学目的和要求:1、掌握导数与微积分的概念及求法。2、掌握微积分学基本定理及应用。3、掌握不定积分的概念及常用积分方法4、掌握Newton-Leibniz公式,了解定积分存在条件。5、会利用定积分解决常见的几何,物理等问题。第一部分单变量微分学第四章导数与微分讲授学时:18学时教学目的与要求:1、掌握导数与微分的概念及其之间的关系2、掌握基本初等函数,复合函数,反函数,及初等函数的求导法则。3、掌握隐函数及参数方程的求导法则教学内容:§1、导数的引进与定义1、导数的引入2、定义及几何意义§2、基本初等函数的导数1、常数的导数2、三角函数的导数3、对数函数的导数4、幂数的导数§3、求导法则1、导数的四则运算2、反函数的求导§4、复合函数的求导法则§5、微分及运算1、微分的定义2、微分的运算法则7§6、隐函数及
本文标题:数据库教学大纲
链接地址:https://www.777doc.com/doc-3414538 .html