您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 其它办公文档 > 建模3(微分方程模型,供参考)
微分方程模型微分方程模型3.1微分方程的几个简单实例3.2Malthus模型与Logistic模型3.3为什么要用三级火箭来发射人造卫星3.4药物在体内的分布3.5传染病模型3.6糖尿病的诊断3.7稳定性问题3.8捕食系统的Volterra方程3.9双种群生态系统3.10分布参数法建模§3.1微分方程的几个简单实例在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题,本节将通过一些最简单的实例来说明微分方程建模的一般方法。在连续变量问题的研究中,微分方程是十分常用的数学工具之一。例1(理想单摆运动)建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。从图3-1中不难看出,小球所受的合力为mgsinθ,根据牛顿第二定律可得:sinmlmg从而得出两阶微分方程:0sin0(0)0,(0)gl(3.1)这是理想单摆应满足的运动方程(3.1)是一个两阶非线性方程,不易求解。当θ很小时,sinθ≈θ,此时,可考察(3.1)的近似线性方程:00(0)0,(0)gl(3.2)由此即可得出2gTl(3.2)的解为:θ(t)=θ0cosωtgl其中当时,θ(t)=04Tt42gTl故有MQPmgl图3-1(3.1)的近似方程例2我方巡逻艇发现敌方潜水艇。与此同时敌方潜水艇也发现了我方巡逻艇,并迅速下潜逃逸。设两艇间距离为60哩,潜水艇最大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜水艇。这一问题属于对策问题,较为复杂。讨论以下简单情形:敌潜艇发现自己目标已暴露后,立即下潜,并沿着直线方向全速逃逸,逃逸方向我方不知。设巡逻艇在A处发现位于B处的潜水艇,取极坐标,以B为极点,BA为极轴,设巡逻艇追赶路径在此极坐标下的方程为r=r(θ),见图3-2。BAA1drdsdθθ图3-2由题意,,故ds=2dr2dsdrdtdt图3-2可看出,222()()()dsdrrd故有:2223()()drrd即:3rdrd(3.3)解为:3rAe(3.4)先使自己到极点的距离等于潜艇到极点的距离,然后按(3.4)对数螺线航行,即可追上潜艇。追赶方法如下:例3一个半径为Rcm的半球形容器内开始时盛满了水,但由于其底部一个面积为Scm2的小孔在t=0时刻被打开,水被不断放出。问:容器中的水被放完总共需要多少时间?解:以容器的底部O点为原点,取坐标系如图3.3所示。令h(t)为t时刻容器中水的高度,现建立h(t)满足的微分方程。设水从小孔流出的速度为v(t),由力学定律,在不计水的内部摩擦力和表面张力的假定下,有:()0.62tgh因体积守衡,又可得:2dVrdhsdt易见:22()rRRh故有:2[()]0.62RRhdhSghdt220.62[()]ShgdhdtRRh即:这是可分离变量的一阶微分方程,得220[()]0.62RRRhTdhSgh302(2)0.62RRhhdhSg53520224214350.6292RRRhhSgSgRxySO图3-3hr例4一根长度为l的金属杆被水平地夹在两端垂直的支架上,一端的温度恒为T1,另一端温度恒为T2,(T1、T2为常数,T1T2)。金属杆横截面积为A,截面的边界长度为B,它完全暴露在空气中,空气温度为T3,(T3T2,T3为常数),导热系数为α,试求金属杆上的温度分布T(x),(设金属杆的导热率为λ)一般情况下,在同一截面上的各点处温度也不尽相同,如果这样来考虑问题,本题要建的数学模型当为一偏微分方程。但由题意可以看出,因金属杆较细且金属杆导热系数又较大,为简便起见,不考虑这方面的差异,而建模求单变量函数T(x)。热传导现象机理:当温差在一定范围内时,单位时间里由温度高的一侧向温度低的一侧通过单位面积的热量与两侧的温差成正比,比例系数与介质有关。T1T2oxABT3ldt时间内通过距离O点x处截面的热量为:'()ATxdtdt时间内通过距离O点x+dx处截面的热量为:'()ATxdxdt由泰勒公式:'()['()()]ATxdxdtATxTxdxdt金属杆的微元[x,x+dx]在dt内获得热量为:()ATxdxdt同时,微元向空气散发出的热量为:3[()]BdxTxTdt系统处于热平衡状态,故有:3()[()]ATxdxdtBdxTxTdt所以金属杆各处温度T(x)满足的微分方程:3()()BTxTTA这是一个两阶常系数线性方程,很容易求解为了保持自然资源的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。本节将建立几个简单的单种群增长模型,以简略分析一下这方面的问题。一般生态系统的分析可以通过一些简单模型的复合来研究,大家若有兴趣可以根据生态系统的特征自行建立相应的模型。美丽的大自然种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,甚至允许它为可微变量,由此引起的误差将是十分微小的。离散化为连续,方便研究§3.2Malthus模型与Logistic模型模型1马尔萨斯(Malthus)模型马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r基本上是一常数,(r=b-d,b为出生率,d为死亡率),即:1dNrNdtdNrNdt或(3.5)0()0()rttNtNe(3.6)(3.1)的解为:其中N0=N(t0)为初始时刻t0时的种群数。马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。令种群数量翻一番所需的时间为T,则有:002rTNNeln2Tr故模型检验比较历年的人口统计资料,可发现人口增长的实际情况与马尔萨斯模型的预报结果基本相符,例如,1961年世界人口数为30.6(即3.06×109),人口增长率约为2%,人口数大约每35年增加一倍。检查1700年至1961的260年人口实际数量,发现两者几乎完全一致,且按马氏模型计算,人口数量每34.6年增加一倍,两者也几乎相同。19502000205021002150220000.511.522.533.5x1011t/年N/人马尔萨斯模型人口预测模型预测假如人口数真能保持每34.6年增加一倍,那么人口数将以几何级数的方式增长。例如,到2510年,人口达2×1014个,即使海洋全部变成陆地,每人也只有9.3平方英尺的活动范围,而到2670年,人口达36×1015个,只好一个人站在另一人的肩上排成二层了。故马尔萨斯模型是不完善的。几何级数的增长Malthus模型实际上只有在群体总数不太大时才合理,到总数增大时,生物群体的各成员之间由于有限的生存空间,有限的自然资源及食物等原因,就可能发生生存竞争等现象。所以Malthus模型假设的人口净增长率不可能始终保持常数,它应当与人口数量有关。模型2Logistic模型人口净增长率应当与人口数量有关,即:r=r(N)从而有:()dNrNNdt(3.7)r(N)是未知函数,但根据实际背景,它无法用拟合方法来求。为了得出一个有实际意义的模型,我们不妨采用一下工程师原则。工程师们在建立实际问题的数学模型时,总是采用尽可能简单的方法。r(N)最简单的形式是常数,此时得到的就是马尔萨斯模型。对马尔萨斯模型的最简单的改进就是引进一次项(竞争项)对马尔萨斯模型引入一次项(竞争项),令r(N)=r-aN此时得到微分方程:()dNraNNdt(1)dNNrNdtK或(3.8)(3.8)被称为Logistic模型或生物总数增长的统计筹算律,是由荷兰数学生物学家弗赫斯特(Verhulst)首先提出的。一次项系数是负的,因为当种群数量很大时,会对自身增大产生抑制性,故一次项又被称为竞争项。(3.8)可改写成:()dNkKNNdt(3.9)(3.9)式还有另一解释,由于空间和资源都是有限的,不可能供养无限增长的种群个体,当种群数量过多时,由于人均资源占有率的下降及环境恶化、疾病增多等原因,出生率将降低而死亡率却会提高。设环境能供养的种群数量的上界为K(近似地将K看成常数),N表示当前的种群数量,K-N恰为环境还能供养的种群数量,(3.9)指出,种群增长率与两者的乘积成正比,正好符合统计规律,得到了实验结果的支持,这就是(3.9)也被称为统计筹算律的原因。图3-5对(3.9)分离变量:11dNkKdtNKN两边积分并整理得:1kKtKNCe令N(0)=N0,求得:00KNCN故(3.9)的满足初始条件N(0)=N0的解为:000()()kKtNKNtNKNe(3.10)易见:N(0)=N0,lim()tNtKN(t)的图形请看图3.5模型检验用Logistic模型来描述种群增长的规律效果如何呢?1945年克朗皮克(Crombic)做了一个人工饲养小谷虫的实验,数学生物学家高斯(E·F·Gauss)也做了一个原生物草履虫实验,实验结果都和Logistic曲线十分吻合。大量实验资料表明用Logistic模型来描述种群的增长,效果还是相当不错的。例如,高斯把5只草履虫放进一个盛有0.5cm3营养液的小试管,他发现,开始时草履虫以每天230.9%的速率增长,此后增长速度不断减慢,到第五天达到最大量375个,实验数据与r=2.309,a=0.006157,N(0)=5的Logistic曲线:几乎完全吻合,见图3.6。2.309375()174tNte图3-6Malthus模型和Logistic模型的总结Malthus模型和Logistic模型均为对微分方程(3.7)所作的模拟近似方程。前一模型假设了种群增长率r为一常数,(r被称为该种群的内禀增长率)。后一模型则假设环境只能供养一定数量的种群,从而引入了一个竞争项。用模拟近似法建立微分方程来研究实际问题时必须对求得的解进行检验,看其是否与实际情况相符或基本相符。相符性越好则模拟得越好,否则就得找出不相符的主要原因,对模型进行修改。Malthus模型与Logistic模型虽然都是为了研究种群数量的增长情况而建立的,但它们也可用来研究其他实际问题,只要这些实际问题的数学模型有相同的微分方程即可,下面我们来看两个较为有趣的实例。例5赝品的鉴定历史背景:在第二次世界大战比利时解放以后,荷兰野战军保安机关开始搜捕纳粹同谋犯。他们从一家曾向纳粹德国出卖过艺术品的公司中发现线索,于1945年5月29日以通敌罪逮捕了三流画家范·梅格伦(H·A·Vanmeegren),此人曾将17世纪荷兰名画家扬·弗米尔(JanVeermeer)的油画“捉奸”等卖给纳粹德国戈林的中间人。可是,范·梅格伦在同年7月12日在牢里宣称:他从未把“捉奸”卖给戈林,而且他还说,这一幅画和众所周知的油画“在埃牟斯的门徒”以及其他四幅冒充弗米尔的油画和两幅德胡斯(17世纪荷兰画家)的油画,都是他自己的作品,这件事在当时震惊了全世界,为了证明自己是一个伪造者,他在监狱里开始伪造弗米尔的油画“耶稣在门徒们中间”,当这项工作接近完成时,范·梅格伦获悉自己的通敌罪已被改为伪造罪,因此他拒绝将这幅画变陈,以免留下罪证。历史背景:为了审理这一案件,法庭组织了一个由著名化学家、物理学家和艺术史学家组成的国际专门小组查究这一事件。他们用X射线检验画布上是否曾经有过别的画。此外,他们分析了油彩中的拌料(色粉),检验油画中有没有历经岁月的迹象。科学家们终于在其中的几幅画中发现了现代颜料钴兰的痕迹,还在几幅画中检验出了20世纪初才发明的酚醛类人工树脂。根据这些证据,范·梅格伦于1947年10月12日被宣告犯有伪造罪,被判刑一年。可是他在监狱中只待了两个多月就因心脏病发作,于1947年12月30日死去。历史背景:为了审理这一案件,法庭组
本文标题:建模3(微分方程模型,供参考)
链接地址:https://www.777doc.com/doc-3495485 .html