您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 风力发电机组中的齿轮箱是一个重要的机械部件
风力发电机组中的齿轮箱是一个重要的机械部件,其主要功能是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。风轮的转速很低,远达不到发电机发电的要求,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。根据机组的总体布置要求,有时将与风轮轮毂直接相连的传动轴(俗称大轴)和齿轮箱的输入轴合为一体,其轴端形式是法兰盘连接结构。也有将大轴与齿轮箱分别布置,其间利用涨紧套装置或联轴节连接的结构。为了增加机组的制动能力,常常在齿轮箱的输入端或输出端设置刹车装置,配合叶尖制动(定桨距风轮)或变桨距制动装置共同对机组传动系统进行联合制动。由于机组安装在高山、荒野、海滩、海岛等风口处,受无规律的变向变载荷的风力作用以及强阵风的冲击,常年经受酷暑、严寒和极端温差的影响,加之所处自然环境交通不便,齿轮箱安装在塔顶的狭小空间内,一旦出现故障,修复非常困难,故对其可靠性和使用寿命都提出了比一般机械高得多的要求。例如,对构件材料的要求,除了常规状态下机械性能外,还应该具有低温状态下抗冷脆性等特性;应保证齿轮箱平稳工作,防止振动和冲击;保证充分的润滑条件等等。对冬夏温差巨大的地区,要配置合适的加热和冷却装置。还要设置监控点,对运转和润滑状态进行遥控。不同形式的风力发电机组有不一样的要求,齿轮箱的布置形式以及结构也因此而异。本章论述是以水平轴风力发电机组用固定平行轴齿轮传动和行星齿轮传动为代表的。第二节齿轮箱的构造一、齿轮箱的类型与特点风力发电机组齿轮箱的种类很多,按照传统类型可分为圆柱齿轮箱、行星齿轮箱以及它们互相组合起来的齿轮箱;按照传动的级数可分为单级和多级齿轮箱;按照转动的布置形式又可分为展开式、分流式和同轴式以及混合式等等。常用齿轮箱形式及其特点和应用见表8-1。二、齿轮箱图例各种齿轮箱图例如图8-1-图8-26所示。图8-1为两级圆柱齿轮传动齿轮箱的展开图。输入轴大齿轮和中间轴大齿轮都是以平键和过盈配合与轴联接;两个从动齿轮都是采用了轴齿轮的结构。图8-2为两级行星和一级圆柱齿轮传动齿轮箱的展开图。风力发电机组的大轴通过齿形联轴节将动力传到第一级行星齿轮,再由太阳轮传至第二级行星轮,最后由末级平行轴齿轮将动力分流输出。有两个取力装置,其中一个通过高弹性联轴节带动发电机,另一个则作为他种用途的驱动装置。两个行星齿轮传动装置的太阳轮均通过齿形联轴节将动力传至下一级。图8-4和图8-5都是一级行星和两级平行轴圆柱齿轮传动装置,前者采用飞溅润滑方式,后者采用强制润滑方式并与机组的大轴做成一体。图8-6所示的是一种结构较为新颖的两级行星和一级平行轴圆柱齿轮传动齿轮箱,其行星架固定,内齿圈主动,两排行星齿轮变为定轴传动。从结构上看各个组件可独立拆卸,便于在机舱内进行检修。三、国产大型风力发电机组齿轮箱简介国内有不少风力发电齿轮箱专业生产厂,其中最为著名的是重庆齿轮箱责任有限公司、杭州前进齿轮箱集团有限公司和南京高精齿轮股份有限公司等三家,其产品参数见表8-2-表8-4,各产品外形结构如图8-7-图8-26所示。它们都是国家机械工业大型骨干企业,拥有先进的加工设备和设计制造技术,可以为风力发电行业批量提供各种型号的齿轮箱产品。近年来这几家公司在吸收国际先进技术的基础上,相继开发了不少新产品,其中多数是按照主机厂的特定要求研制,例如为新疆金风公司配套的600kw风力发电机组齿轮箱,综合了国外产品的特点,优化了设计参数,加强了关键结构,运转平稳,质量可靠。第三节齿轮箱的主要零部件一、箱体箱体是齿轮箱的重要部件,它承受来自风轮的作用力和齿轮传动时产生的反力。箱体必须具有足够的刚性去承受力和力矩的作用,防止变形,保证传动质量。箱体的设计应按照风力发电机组动力传动的布局、加工和装配、检查以及维护等要求来进行。应注意轴承支承和机座支承的不同方向的反力及其相对值,选取合适的支承结构和壁厚,增设必要的加强筋。筋的位置须与引起箱体变形的作用力的方向相一致。箱体的应力情况十分复杂且分布不匀,只有采用现代计算方法,如有限元、断裂力学等方法辅以模拟实际工况的光弹实验,才能较为准确地计算出应力分布的状况。利用计算机辅助设计,可以获得与实际应力十分接近的结果。采用铸铁箱体可发挥其减振性,易于切削加工等特点,适于批量生产。常用的材料有球墨铸铁和其他高强度铸铁。设计铸造箱体时应尽量避免壁厚突变,减小壁厚差,以免产生缩孔和疏松等缺陷。用铝合金或其他轻合金制造的箱体,可使其重量较铸铁轻20%-30%,但从另一角度考虑,轻合金铸造箱体,降低重量的效果并不显著。这是因为轻合金铸件的弹性模量较小,为了提高刚性,设计时常须加大箱体受力部分的横截面积,在轴承座处加装钢制轴承座套,相应部位的尺寸和重量都要加大。目前除了较小的风力发电机组尚用铝合金箱体外,大型风力发电齿轮箱应用轻铝合金铸件箱体已不多见。单件、小批生产时,常采用焊接或焊接与铸造相结合的箱体。为减小机械加工过程和使用中的变形,防止出现裂纹,无论是铸造或是焊接箱体均应进行退火、时效处理,以消除内应力。为了便于装配和定期检查齿轮的啮合情况,在箱体上应设有观察窗。机座旁一般设有连体吊钩,供起吊整台齿轮箱用。箱体支座的凸缘应具有足够的刚性,尤其是作为支承座的耳孔和摇臂支座孔的结构,其支承刚度要作仔细的校核计算。为了减小齿轮箱传到机舱机座的振动,齿轮箱可安装在弹性减振器上。最简单的弹性减振器是用高强度橡胶和钢垫做成的弹性支座块,合理使用也能取得较好的结果。箱盖上还应设有透气罩、油标或油位指示器。在相应部位设有注油器和放油孔。放油孔周围应留有足够的放油空间。采用强制润滑和冷却的齿轮箱,在箱体的合适部位设置进出油口和相关的液压件的安装位置。二、齿轮和轴风力发电机组运转环境非常恶劣,受力情况复杂,要求所用的材料除了要满足机械强度条件外,还应满足极端温差条件下所具有的材料特性,如抗低温冷脆性、冷热温差影响下的尺寸稳定性等等。对齿轮和轴类零件而言,由于其传递动力的作用而要求极为严格的选材和结构设计,一般情况下不推荐采用装配式拼装结构或焊接结构,齿轮毛坯只要在锻造条件允许的范围内,都采用轮辐轮缘整体锻件的形式。当齿轮顶圆直径在2倍轴径以下时,由于齿轮与轴之间的联接所限,常制成轴齿轮的形式。为了提高承载能力,齿轮一般都采用优质合金钢制造。外齿轮推荐采用20CrMnMo、15CrNi6、17Cr2Ni2A、20CrNi2MoA、17CrNiMc6、17Cr2Ni2MoA等材料。内齿圈按其结构要求,可采用42CrMoA、34Cr2Ni2MoA等材料,也可采用与外齿轮相同的材料。采用锻造方法制取毛坯,可获得良好的锻造组织纤维和相应的力学特征。合理的预热处理以及中间和最终热处理工艺,保证了材料的综合机械性能达到设计要求。常用材料的力学性能表见表8-5。(一)齿轮1.齿轮精度齿轮箱内用作主传动的齿轮精度,外齿轮不低于5级GB/T10095-2001,内齿轮不低于6级GB/T10095-2001。选择齿轮精度时要综合考虑传动系统的实际需要,优秀的传动质量是靠传动装置各个组成部分零件的精度和内在质量来保证的,不能片面强调提高个别件的要求,使成本大幅度提高,却达不到预定的效果。2.渗碳淬火通常齿轮最终热处理的方法是渗碳淬火,齿表面硬度达到HRC60+/-2,同时规定随模数大小而变化的硬化层深度要求,具有良好的抗磨损接触强度,轮齿心部则具有相对较低的硬度和较好的韧性,能提高抗弯曲强度。渗碳淬火后获得较理想的表面残余应力,它可以使轮齿最大拉应力区的应力减小。因此对齿根部分通常保留热处理后的表面,在前道工序滚齿时要用齿形带触角的留磨量滚刀滚齿,从而在磨齿时不会磨去齿根部分。磨齿时选择合适的砂轮和切削用量,辅以大流量的切削冷却液是防止出现磨齿裂纹和烧伤的重要措施。对齿轮进行超声波探伤、磁粉探伤和涂色探伤,以及进行必要的金相检验等,都是控制齿轮内在质量的有效措施。3.齿形加工为了减轻齿轮副啮合时的冲击,降低噪声,需要对齿轮的齿形齿向进行修形。在齿轮设计计算时,可根据齿轮的弯曲强度和接触强度初步确定轮齿的变形量,再结合考虑轴的弯曲、扭转变形以及轴承和箱体的刚度,绘出齿形和齿向修形曲线,并在磨齿时进行修正。圆柱齿轮的加工路线如下:下料一锻造毛坯一荒车一预热处理一粗车一半精加工外形尺寸一制齿加工(滚齿或插齿)一去毛刺、齿顶倒棱、齿端倒角一热处理(渗碳淬火)一精加工基准面一磨齿一检验一清洗一入库。加工人字齿的时候,如是整体结构,半人字齿轮之间应有退刀槽;如是拼装入字轮,则分别将两半齿轮按普通齿轮加工,最后用工装准确对齿,再通过过盈配合套装在轴上。在齿轮加工中,规定好加工工艺基准非常重要。轴齿轮加工时,常用顶尖顶紧两轴端中心孔安装在机床上。盘状圆柱齿轮则利用其内孔或外圆以及一个端面作为工艺基准,通过夹具或人工校准在机床上定位。在一对齿轮副中,小齿轮的齿宽比大齿轮略大一些,这主要是为了补偿轴向尺寸变动和便于安装。4齿轮与轴的联接1)平键联接:常用于具有过盈配合的齿轮或联轴节的联接。由于键是标准件,故可根据联接的结构特点、使用要求和工作条件进行选择。如果强度不够,可采用双键,成180’布置,在强度校核时按1.5个键计算。2)花键联接:通常这种联接是没有过盈的,因而被联接零件需要轴向固定。花键联接承载能力高,对中性好,但制造成本高,需用专用刀具加工。花键按其齿形不同,可分为矩形花键、渐开线花键和三角形花键三种。渐开线花键联接在承受负载时齿间的径向力能起到自动定心作用,使各个齿受力比较均匀,其加工工艺与齿轮大致相同,易获得较高的精度和互换性,故在风力发电齿轮箱中应用较广。3)过盈配合联接:过盈配合联接能使轴和齿轮(或联轴节)具有最好的对中性,特别是在经常出现冲击载荷情况下,这种联接能可靠地工作,在风力发电齿轮箱中得到广泛的应用。利用零件间的过盈配合形成的联接,其配合表面为圆柱面或圆锥面(锥度可取1:30-1:8)。圆锥面过盈联接多用于载荷较大,需多次装拆的场合。4)胀紧套联接:利用轴、孔与锥形弹性套之间接触面上产生的摩擦力来传递动力,是一种无键联接方式,定心性好,装拆方便,承载能力高,能沿周向和轴向调节轴与轮毂的相对位置,且具有安全保护作用。弹性套是在轴向压紧力的作用下,其锥面迫使被其套住的轴内环缩小,压紧被包容的轴颈,形成过盈结合面实现联接。弹性套材料多用65、65Mn、55CR2或60Gr2等钢材。弹性套的工作应力一般不应超过其材料的屈服极限,其强度和变形可根据圆锥面过盈联接公式计算。内外环与轴和毂孔的配合通常取H7/h6,配合表面粗糙度为Ra0.8-Ra0.2。联接表面的压力可按厚壁圆筒的有关公式计算。5)轴的设计:齿轮箱中的轴按其主动和被动关系可分为主动轴、从动轴和中间轴。首级主动轴和末级从动轴的外伸部分,与风轮轮毂、中间轴或电机传动轴相联接。为了提高可靠性和减小外形尺寸,有时将半联轴器(法兰)与轴制成一体。输出轴和输入轴的轴径d(mm)可按下式作粗略计算:d按计算结果取较大值并圆整成标准直径,且以此为最小轴径设计成阶梯轴。中间轴直径则按弯矩和扭矩的合成进行计算。在轴的设计图完成后再进行精确的分析计算,最终完善细部结构。由于是增速传动,较大的传动比使轴上的齿轮直径较小,因而输出轴往往采用轴齿轮的结构。为保证轴的强度和刚度,允许轴的直径略小于齿轮顶圆,此时要注意留有滚齿、磨齿的退刀间距,尽可能避免损伤轴承轴颈。轴上各个配合部分的轴颈需要进行磨削加工。为了减少应力集中,对轴上台肩处的过渡圆角、花键向较大轴径过渡部分,均应作必要的处理,例如抛光,以提高轴的疲劳强度。在过盈配合处,为减少轮毂边缘的应力集中,压合处的轴径应比相邻部分轴径加大5%,或在轮毂上开出卸荷槽。装在轴上的零件,轴向固定应可靠,工作载荷应尽可能用轴上的止推轴肩来承受,相反方向的固定则可利用螺帽或其他紧固件。为防止螺纹松动,可利用止动垫圈、双螺帽垫圈、锁止螺钉或串联铁丝等。有时为了节省空间,简化结构,也可以用弹簧挡圈代替螺帽和止动垫圈,但不能用于轴向载荷过大的地方。轴的材料采用碳钢和合金钢。如40、45
本文标题:风力发电机组中的齿轮箱是一个重要的机械部件
链接地址:https://www.777doc.com/doc-3699976 .html