您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 环境工程原理第07章_过滤
第七章过滤第七章过滤第一节过滤操作的基本概念第二节表面过滤的基本理论第三节深层过滤的基本理论本章主要内容一、过滤过程二、过滤介质三、过滤分类本节的主要内容第一节过滤操作的基本概念•混合物的分离:液体和气体混合物•什么现象属于过滤?混合物中的流体在推动力(重力、压力、离心力)的作用下通过过滤介质,固体粒子被截留,而流体通过过滤介质,从而实现流体与颗粒物的分离。液-固分离,气-固分离如砂滤池、袋式除尘器、口罩……•过滤分离的对象?粗大颗粒、细微离子、细菌、病毒和高分子物质等一、过滤过程第一节过滤操作的基本概念•固体颗粒:由一定形状的固体颗粒堆积而成,包括天然的和人工合成的。天然:石英砂、无烟煤、磁铁矿粒等。人工:聚苯乙烯发泡塑料球等。固体颗粒过滤介质在水处理中的各类滤池中应用广泛,通常称为滤料。二、过滤介质第一节过滤操作的基本概念•织物介质:又称滤布,如棉、麻、丝、毛、合成纤维、金属丝等编制成的滤布。•多孔固体介质:如素烧陶瓷板或管、烧结金属板或管等。•多孔膜:由高分子有机材料或无机材料制成的薄膜,根据分离孔径的大小,可分为微滤、超滤等。第一节过滤操作的基本概念1.按过滤机理分:有表面过滤和深层过滤2.按促使流体流动的推动力分:•重力过滤:在水位差的作用下被过滤的混合液通过过滤介质进行过滤,如水处理中的快滤池。•真空过滤:在真空下过滤,如水处理中的真空过滤机。•压力差过滤:在加压条件下过滤,如水处理中的压滤滤池。•离心过滤:使被分离的混合液旋转,在所产生的惯性离心力的作用下,使流体通过周边的滤饼和过滤介质,从而实现与颗粒物的分离。三、过滤分类第一节过滤操作的基本概念一、过滤基本方程二、过滤过程的计算三、过滤常数的测定四、滤饼洗涤(略)五、过滤机生产能力的计算(略)本节的主要内容第二节表面过滤的基本理论表面过滤过程被过滤的颗粒粒径较小的情况表面过滤通常发生在过滤流体中颗粒物浓度较高或过滤速度较慢的情况。滤饼过滤多孔性介质第二节表面过滤的基本理论主要特征:随着过滤过程的进行,流体中的固体颗粒被截留在过滤介质表面并逐渐积累成滤饼层。滤饼层厚度:随过滤时间的增长而增厚,其增加速率与过滤所得的滤液的量成正比。过滤速度:由于滤饼层厚度的增加,因此在过滤过程中是变化的。过滤速度是描述过滤过程的关键!推动力其它因素一、过滤基本方程第二节表面过滤的基本理论处理量:处理的流体流量或分离得到的纯流体量V(m3)过滤推动力:由流体位差、压差或离心力场造成的过滤压差p过滤面积:表示过滤设备的大小A(m2)过滤速度:单位时间通过单位面积的滤液量u过滤过程的主要参数第二节表面过滤的基本理论某一过滤时间t时的过滤状态p过滤压差相应的滤液量为V过滤速度u定义为:AdtdVudt——微分过滤时间,sdV——dt时间内通过过滤面的滤液量,m3A——过滤面积,m2Lm(表观)第二节表面过滤的基本理论(7.2.1)过滤速度与推动力之间的关系可用下式(Darcy定律)表示:)(cmRRpuRm:过滤介质过滤阻力,1/mRc:滤饼层过滤阻力,1/m假设rm,r分别为过滤介质和滤饼层的过滤比阻,1/m2Rm=rmLm;Rc=rL(7.2.2))(rLLrpumm(7.2.4)Ruth过滤方程r:与过滤介质上形成的滤饼层的孔隙结构特性有关L:与滤液量有关,在过滤过程中是变化的。第二节表面过滤的基本理论假设每过滤1m3滤液得滤饼f(m3)fVLAfVLAV:滤液体积(m3)第二节表面过滤的基本理论(7.2.5)……(7.2.8)另外,可把过滤介质的阻力转化成厚度为Le的滤饼层阻力emmrLLr(7.2.6)eefVLA(7.2.7)2()edVApdtrfVV()edVApuAdtrfVV则:或:(7.2.8)滤饼层的比阻r有两种情况:•不可压缩滤饼:滤饼层的颗粒结构稳定,在压力的作用下不变形,r与p无关•可压缩滤饼:在压力的作用下容易发生变形r0:单位压差下滤饼的比阻,m-2Pa-1;s:滤饼的压缩指数,对于可压缩滤饼,s=0.2~0.8,对于不可压缩滤饼,s=0第二节表面过滤的基本理论sprr0经验式:(7.2.9)将比阻计算式代入式(7.2.8),得:10()sedVApAdtrfVV假设102spKrf则:2()edVKAAdtVV令q=V/A,qe=Ve/A(qe称为过滤介质比当量滤液体积),则)(2eqqKdtdq(7.2.12)(滤饼过滤基本方程)第二节表面过滤的基本理论(7.2.10)(7.2.11)K:过滤常数,如何测定?与下列因素有关:•滤饼的颗粒性质•悬浮液浓度•滤液黏度•滤饼的可压缩性qe:过滤介质特性参数第二节表面过滤的基本理论二、过滤过程的计算确定滤液量与过滤时间和过滤压差等之间的关系。(一)恒压过滤在过滤过程中,过滤压差自始自终保持恒定。对于指定的悬浮液,K为常数。对式(7.2.11)或式(7.2.12)进行积分:第二节表面过滤的基本理论tVedtKAdVVV020)(2tKAVVVe222(7.2.13a)tqeKdtdqqq00)(2Ktqqqe22(7.2.13b)若过滤介质阻力可忽略不计,则简化为:tKAV22Ktq2如果恒压过滤是在滤液量已达到V1,即滤饼层厚度已累计到L1的条件下开始时,应如何计算?K可通过实验测定。L1V1积分时:时间从0t,滤液量V1V第二节表面过滤的基本理论(7.2.14a)(7.2.14b)tKAVVVVVe21212)(2)((7.2.15)第二节表面过滤的基本理论例7.2.1在实验室中用过滤面积为0.1m2的滤布对某种水悬浮液进行过滤试验,在恒定压差下,过滤5min得到滤液1L,又过滤5min得到滤液0.6L。如果再过滤5min,可以再得到多少滤液?解:在恒压过滤条件下,过滤方程为22eqqqKt3211101100.1qm3/m2,1560300ts32210.6101.6100.1qm3/m2,2600ts代入过滤方程得2221102110300eqK(1)2221.61021.610600eqK(2)联立两式可以求得20.710eqm3/m2,60.810Km3/m2s因此,22620.7100.810qqt,当31560900tss,则:2263320.7100.810900qq,解得:232.07310qm3/m2所以223320.12.073101.6100.10.47310qqm3因此可再得到的滤液为0.473L。第二节表面过滤的基本理论(二)恒速过滤恒速过滤是指在过滤过程中过滤速度保持不变,即滤液量与过滤时间呈正比。utqAutV或常数AtVAdtdV代入式(7.2.11))(22eVVKAdtdV第二节表面过滤的基本理论(7.2.16b)(7.2.16a)tAKVVVe222或tKqqqe22(7.2.17b)(7.2.17a)在恒速过程方程中,过滤压差随时间而变化,因此过滤常数K随时间t变化若忽略过滤介质阻力,则简化为:tAKV222或tKq22第二节表面过滤的基本理论(7.2.18a)(7.2.18a)三、过滤常数的测定(一)过滤常数K,qe的计算对于恒压过滤,过滤积分方程改写为:eqKqKqt21t/qq2qe/K斜率1/K第二节表面过滤的基本理论(7.2.19)(二)压缩指数s的计算102spKrfBpsKlg)1(lg在不同的过滤压差下做过滤实验求得相应的K,由上式可得s。第二节表面过滤的基本理论(7.2.20)第三节深层过滤的基本理论一、流体通过颗粒床层的流动二、深层过滤过程中悬浮颗粒的运动三、深层过滤的水力学(略)本节的主要内容深层过滤过程•利用过滤介质间空隙进行过滤。•通常发生在以固体颗粒为滤料的过滤操作中。•滤料内部空隙大于悬浮颗粒粒径。•悬浮颗粒随流体进入滤料内部,在拦截、惯性碰撞、扩散沉淀等作用下颗粒附着在滤料表面上而与流体分开。流体在颗粒滤料层中的流动规律第三节深层过滤的基本理论深层过滤在水处理中的应用•水处理中的快滤池、加压砂滤器•深层过滤一般适用于流体中颗粒含量少的场合。快滤池第三节深层过滤的基本理论一、流体通过颗粒床层的流动颗粒床层是由一定大小和形状的颗粒组成。(一)混合颗粒的几何特性1.粒度分布筛分实验:采用一套标准筛进行测量混合颗粒的累计粒度分布曲线02040608010000.20.40.60.811.21.41.61.8dp(mm)累计质量分数F(%)第三节深层过滤的基本理论2.混合颗粒的平均粒径(二)颗粒床层的几何特性1.颗粒床层的空隙率床层体积颗粒体积床层体积床层体积床层空隙体积•空隙率的大小与颗粒的形状、粒度分布、颗粒床的填充方法和条件、容器直径与颗粒直径之比等有关。第三节深层过滤的基本理论(7.3.3)2.颗粒床层的比表面颗粒的比表面a:单位体积颗粒所具有的表面积颗粒体积颗粒表面积a第三节深层过滤的基本理论床层的比表面积ab:单位体积的床层中颗粒的表面积ab与a之间的关系如下:aab)1(ab主要与颗粒尺寸有关,颗粒尺寸愈小,床层的比表面愈大。(7.3.4)3.颗粒床层的当量直径颗粒床层中空隙所形成的流体通道结构非常复杂。通常采用简化的流动模型来代替床层内的真实流动过程。将实际床层简化成由许多相互平行的小孔道组成的管束。与床层厚度成正比l’=L第三节深层过滤的基本理论颗粒床层的当量直径定义为:流道表面积流道容积流道长度湿润周边流道长度流道截面积湿润周边流道截面积444ebd取面积1m2,厚度为1m的颗粒床层为基准,根据简化模型1流道容积a)1(1床层比表面积床层体积流道表面积第三节深层过滤的基本理论adeb)1(4…与床层空隙率和颗粒尺寸有关则颗粒床层的当量直径为:第三节深层过滤的基本理论(7.3.5)(三)流体在颗粒床层中的流动1.流动速度根据上述的简化模型,流体在颗粒床层中的流动可以看成是在小孔道管束中的流动。流体在孔道内的流动可以看成是层流。流动速度可以用Hagen-Poiseuille定律来描述。ul——流体在床层空隙中的实际流速,m/s;deb——颗粒床层的当量直径,m;p——流体通过颗粒床层的压力差,Pa;——流体粘度,Pas;l’——孔通道的平均长度,m。第三节深层过滤的基本理论'322lpduebl(7.3.7)又,颗粒床层的空床流速u:dVuAdtdV——dt时间内通过床层的滤液量,m3;A——垂直于流向的颗粒床层截面积,m2。床层空隙中的实际流速ul与空床流速u之间有如下关系:uul实际流速与空床流速的物理意义?第三节深层过滤的基本理论(7.3.9)(7.3.8)按照简化模型,孔通道的长度l’与颗粒床层厚度L成正比,则322(1)lpuKaLKozeny-Carmam方程Kl为Kozeny系数,与下列因素有关:床层颗粒粒径、形状床层空隙率等在床层空隙率=0.3~0.5时,Kl=5。第三节深层过滤的基本理论(7.3.11)2.颗粒床层的阻力322)1(aKrl颗粒床层比阻RprLpu则:流体在颗粒床层中流动速度的影响因素?一是促使流体流动的推动力p;二是阻碍流体流动的因素rL:(1)流体黏度;(2)床层阻力:床层性质(比阻r)及厚度L。与颗粒床(过滤介质)的颗粒大小和孔隙率有关通过试验求得。第三节深层过滤的基本理论(7.3.12)
本文标题:环境工程原理第07章_过滤
链接地址:https://www.777doc.com/doc-3819296 .html