您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 电气安装工程 > 例析物理竞赛中纯电阻电路的简化和等效变换
例析物理竞赛中纯电阻电路的简化和等效变换计算一个电路的电阻,通常从欧姆定律出发,分析电路的串并联关系。实际电路中,电阻的联接千变万化,我们需要运用各种方法,通过等效变换将复杂电路转换成简单直观的串并联电路。本节主要介绍几种常用的计算复杂电路等效电阻的方法。1、等势节点的断接法在一个复杂电路中,如果能找到一些完全对称的点(以两端连线为对称轴),那么可以将接在等电势节点间的导线或电阻或不含电源的支路断开(即去掉),也可以用导线或电阻或不含电源的支路将等电势节点连接起来,且不影响电路的等效性。这种方法的关键在于找到等势点,然后分析元件间的串并联关系。常用于由等值电阻组成的结构对称的电路。【例题1】在图8-4甲所示的电路中,R1=R2=R3=R4=R5=R,试求A、B两端的等效电阻RAB。模型分析:这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。将图8-4甲图中的A、D缩为一点A后,成为图8-4乙图。答案:RAB=83R。【例题2】在图8-5甲所示的电路中,R1=1Ω,R2=4Ω,R3=3Ω,R4=12Ω,R5=10Ω,试求A、B两端的等效电阻RAB。模型分析:这就是所谓的桥式电路,这里先介绍简单的情形:将A、B两端接入电源,并假设R5不存在,C、D两点的电势相等。因此,将C、D缩为一点C后,电路等效为图8-5乙对于图8-5的乙图,求RAB是非常容易的。事实上,只要满足21RR=43RR的关系,该桥式电路平衡。答案:RAB=415Ω。【例题3】在如图所示的有限网络中,每一小段导体的电阻均为R,试求A、B两点之间的等效电阻RAB。【例题4】用导线连接成如图所示的框架,ABCD是正四面体,每段导线的电阻都是1。求AB间的总电阻。2、电流分布法设有电流I从A点流入、B点流出,应用电流分流的思想和网络中两点间不同路径等电压的思想,(即基耳霍夫定理),建立以网络中各支路的电流为未知量的方程组,解出各支路电流与总电流I的关系,然后经任一路径计算A、B两点间的电压ABU,再由IURABAB即可求出等效电阻。【例题1】7根电阻均为r的电阻丝接成如图所示的网络,试求出A、B两点之间的等效电阻ABR。【例题2】10根电阻均为r的电阻丝接成如图所示的网络,试求出A、B两点之间的等效电阻ABR。【例题3】8根电阻均为r的电阻丝接成如图所示的网络,C、D之间是两根电阻丝并联而成,试求出A、B两点之间的等效电阻ABR。电流叠加原理:直流电路中,任何一条支路的电流都可以看成是由电路中各个电源分别ABDCABCDAB作用时,在此支路中产生的电流的代数和。所谓电路中只有一个电源单独作用,就是假设将其余电源均除去,但是它们的内阻仍应计及。【例题4】“田”字形电阻网络如图,每小段电阻为R,求A、B间等效电阻。3、Y—△变换法在某些复杂的电路中往往会遇到电阻的Y型或△,如图所示,有时把Y型联接代换成等效的△型联接,或把△型联接代换成等效的Y型联接,可使电路变为串、并联,从而简化计算,等效代换要求Y型联接三个端纽的电压312312UUU、、及流过的电流321III、、与△型联接的三个端纽相同。⑴将Y型网络变换到△型电路中的变换式:313322112RRRRRRRR213322131RRRRRRRR113322123RRRRRRRR⑵将△型电路变换到Y型电路的变换式:31231231121RRRRRR31231223122RRRRRR31231223313RRRRRR以上两套公式的记忆方法:△→Y:分母为三个电阻的和,分子为三个待求电阻相邻两电阻之积。Y→△:分子为电阻两两相乘再相加,分母为待求电阻对面的电阻。当Y形联接的三个电阻相等时,与之等效的△形联接的三个电阻相等,且等于原来的三倍;同样,当△联接的三个电阻相等时,与之等效的Y形联接的三个电阻相等,且等于原来的1/3。【例题1】对不平衡的桥式电路,求等效电阻RAB。BA1233I3RO2R1R2I1I3I32I21I123R31R12R提示:法一:“Δ→Y”变换;法二:基尔霍夫定律【例题2】试求如图所示电路中的电流I。(分别应用两种变换方式计算)【课堂练习】分别求下图中AB、CD间等效电阻。(答案:0.5R;RPQ=4Ω)4、无限网络若,aaaax(a>0)在求x值时,注意到x是由无限多个a组成,所以去掉左边第一个a对x值毫无影响,即剩余部分仍为x,这样,就可以将原式等效变换为xax,即02axx。所以2411ax这就是物理学中解决无限网络问题的基本思路,那就是:无穷大和有限数的和仍为无穷大。⑴一维无限网络【例题1】在图示无限网络中,每个电阻的阻值均为R,试求A、B两点间的电阻RAB。解法一:在此模型中,我们可以将“并联一个R再串联一个R”作为电路的一级,总电路是这样无穷级的叠加。在图8-11乙图中,虚线部分右边可以看成原有无限网络,当它添加一级后,仍为无限网络,即V4123I321111666RAB∥R+R=RAB解这个方程就得出了RAB的值。答案:RAB=251R。解法二:可以,在A端注入电流I后,设第一级的并联电阻分流为I1,则结合基尔霍夫第一定律和应有的比例关系,可以得出相应的电流值如图8-12所示对图中的中间回路,应用基尔霍夫第二定律,有(I−I1)R+(I−I1)II1R−I1R=0解得I1=215I很显然UA−IR−I1R=UB即UAB=IR+215IR=251IR最后,RAB=IUAB=251R。【例题2】如图所示,由已知电阻r1、r2和r3组成的无穷长梯形网络,求a、b间的等效电阻Rab.(开端形)【例题3】如图所示,由已知电阻r1、r2和r3组成的无穷长梯形网络,求a、b间的等效电阻Rab.(闭端形)⑵双边一维无限网络【例题4】如图所示,两头都是无穷长,唯独中间网孔上缺掉一个电阻r2,求e、f之间的等效电阻。(中间缺口形)【例题5】如图所示,两头都是无穷长,唯独旁边缺一个电阻r2,求f、g之间的等效电阻.(旁边缺口形)【例题6】如图所示,求g、f间的等效电阻。(完整形)小结:一维无限网络利用网络的重复性。⑶二维无限网络【例题7】图为一个网格为正方形的平面无穷网络,网络的每一个节点都有四个电阻与上下左右四个节点分别相联,每个电阻大小均为R,由此,按左右、上下一直延伸到无穷远处.A和B为网络中任意两个相邻节点,试求A、B间的等效电阻RAB.模型分析:如图,设有一电流I从A点流入,从无穷远处流出.由于网络无穷大,故网络对于A点是对称的,电流I将在联接A点的四个电阻上平均分配.这时,电阻R(指A、B两节点间的电阻)上的电流为I/4,方向由A指向B.同理,再设一电流I从无穷远处流处,从节点B流出.由于网络无穷大,B也是网络的对称点,因此在电阻R上分得的电流也为I/4,方向也是由A指向B.将上述两种情况叠加,其结果将等效为一个从节点A流入网络,又从节点B流出网络的稳恒电流I,在无穷远处既不流入也不流出.每个支路上的电流也是上述两种情况下各支路电流的叠加.因此,R电阻上的电流为I/2.所以A、B两节点间的电势差为:【例题8】对图示无限网络,求A、B两点间的电阻RAB。【例题9】有一个无限平面导体网络,它由大小相同的正六边形网眼组成,如图所示。所有六边形每边的电阻为0R,求:(1)结点a、b间的电阻。(2)如果有电流I由a点流入网络,由g点流出网络,那么流过de段电阻的电流Ide为多大。解:(1)设有电流I自a点流入,流到四面八方无穷远处,那么必有3/I电流由a流向c,有6/I电流由c流向b。再假设有电流I由四面八方汇集b点流出,那么必有6/I123456789abcdeg电流由a流向c,有3/I电流由c流向b。将以上两种情况综合,即有电流I由a点流入,自b点流出,由电流叠加原理可知263IIIIac(由a流向c)263IIIIcb(由c流向b)因此,a、b两点间等效电阻000RIRIRIIURcbacABAB(2)假如有电流I从a点流进网络,流向四面八方,根据对称性,可以设AIIII741BIIIIIII986532应该有IIIAB63因为b、d两点关于a点对称,所以AbedeIII21同理,假如有电流I从四面八方汇集到g点流出,应该有BdeII最后,根据电流的叠加原理可知IIIIIIIIBABAdedede61636121⑷三维无限网络【例题10】假设如图有一个无限大NaCl晶格,每一个键电阻为r,求相邻两个Na和Cl原子间的电阻。【例题11】在图示的三维无限网络中,每两个节点之间的导体电阻均为R,试求A、B两点间的等效电阻RAB。当A、B两端接入电源时,根据“对称等势”的思想可知,C、D、E…各点的电势是彼此相等的,电势相等的点可以缩为一点,它们之间的电阻也可以看成不存在。这里取后一中思想,将CD间的导体、DE间的导体…取走后,电路可以等效为图8-13乙所示的二维无限网络。【答案】RAB=212R
本文标题:例析物理竞赛中纯电阻电路的简化和等效变换
链接地址:https://www.777doc.com/doc-3949524 .html