您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 教育/培训 > 2015年高中数学步步高大一轮复习讲义(文科)第八章 8.3
§8.3平行关系1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅aα,b⃘α,a∥ba∥αa∥α,aβ,α∩β=b结论a∥αb∥αa∩α=∅a∥b2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅aβ,bβ,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,aβ结论α∥βα∥βa∥ba∥α1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(2)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(3)若直线a与平面α内无数条直线平行,则a∥α.(×)(4)空间四边形ABCD中,E、F分别是AB,AD的中点,则EF∥平面BCD.(√)(5)若α∥β,直线a∥α,则a∥β.(×)2.若直线l不平行于平面α,且l⃘α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案B解析由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.3.下列命题中,错误的是()A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一个平面的两个平面平行C.若两个平面平行,则位于这两个平面内的直线也互相平行D.若两个平面平行,则其中一个平面内的直线平行于另一个平面答案C解析由面面平行的判定定理和性质知A、B、D正确.对于C,位于两个平行平面内的直线也可能异面.4.已知平面α∥平面β,直线aα,有下列命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中真命题的序号是________.答案②解析因为α∥β,aα,所以a∥β,在平面β内存在无数条直线与直线a平行,但不是所有直线都与直线a平行,故命题②为真命题,命题①为假命题.在平面β内存在无数条直线与直线a垂直,故命题③为假命题.5.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.答案2解析因为直线EF∥平面AB1C,EF平面ABCD,且平面AB1C∩平面ABCD=AC,所以EF∥AC,又E是DA的中点,所以F是DC的中点,由中位线定理可得EF=12AC,又在正方体ABCD-A1B1C1D1中,AB=2,所以AC=22,所以EF=2.题型一直线与平面平行的判定与性质例1(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.思维启迪(1)利用等腰△EDB底边中线和高重合的性质证明;(2)根据线面平行的判定或两个平面平行的性质证明线面平行.证明(1)如图,取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO,EC平面EOC,所以BD⊥平面EOC,因此BD⊥EO.又O为BD的中点,所以BE=DE.(2)方法一如图,取AB的中点N,连接DM,DN,MN.因为M是AE的中点,所以MN∥BE.又MN平面BEC,BE平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°.又CB=CD,∠BCD=120°,因此∠CBD=30°.所以DN∥BC.又DN平面BEC,BC平面BEC,所以DN∥平面BEC.又MN∩DN=N,所以平面DMN∥平面BEC.又DM平面DMN,所以DM∥平面BEC.方法二如图,延长AD,BC交于点F,连接EF.因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因为∠AFB=30°,所以AB=12AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⃘平面BEC,EF平面BEC,所以DM∥平面BEC.思维升华判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(aα,bα,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,aα⇒a∥β);(4)利用面面平行的性质(α∥β,a⃘β,a∥α⇒a∥β).如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.证明因为EH∥A1D1,A1D1∥B1C1,EH⃘平面BCC1B1,B1C1平面BCC1B1,所以EH∥平面BCC1B1.又平面FGHE∩平面BCC1B1=FG,所以EH∥FG,即FG∥A1D1.又FG⃘平面ADD1A1,A1D1平面ADD1A1,所以FG∥平面ADD1A1.题型二平面与平面平行的判定与性质例2如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.思维启迪要证四点共面,只需证GH∥BC;要证面面平行,可证一个平面内的两条相交直线和另一个平面平行.证明(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E、F分别为AB、AC的中点,∴EF∥BC,∵EF⃘平面BCHG,BC平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⃘平面BCHG,GB平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.思维升华证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明(1)如图,连接SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB平面BDD1B1,EG平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD平面BDD1B1,FG平面BDD1B1,∴FG∥平面BDD1B1,且EG平面EFG,FG平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.题型三平行关系的综合应用例3如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?思维启迪利用线面平行的性质可以得到线线平行,可以先确定截面形状,再建立目标函数求最值.解∵AB∥平面EFGH,平面EFGH与平面ABC和平面ABD分别交于FG、EH.∴AB∥FG,AB∥EH,∴FG∥EH,同理可证EF∥GH,∴截面EFGH是平行四边形.设AB=a,CD=b,∠FGH=α(α即为异面直线AB和CD所成的角或其补角).又设FG=x,GH=y,则由平面几何知识可得xa=CGBC,yb=BGBC,两式相加得xa+yb=1,即y=ba(a-x),∴S▱EFGH=FG·GH·sinα=x·ba·(a-x)·sinα=bsinαax(a-x).∵x0,a-x0且x+(a-x)=a为定值,∴当且仅当x=a-x时,bsinαax(a-x)=absinα4,此时x=a2,y=b2.即当截面EFGH的顶点E、F、G、H为棱AD、AC、BC、BD的中点时截面面积最大.思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,在侧面PBC内,有BE⊥PC于E,且BE=63a,试在AB上找一点F,使EF∥平面PAD.解在平面PCD内,过E作EG∥CD交PD于G,连接AG,在AB上取点F,使AF=EG,∵EG∥CD∥AF,EG=AF,∴四边形FEGA为平行四边形,∴FE∥AG.又AG平面PAD,FE平面PAD,∴EF∥平面PAD.∴F即为所求的点.又PA⊥面ABCD,∴PA⊥BC,又BC⊥AB,∴BC⊥面PAB.∴PB⊥BC.∴PC2=BC2+PB2=BC2+AB2+PA2.设PA=x则PC=2a2+x2,由PB·BC=BE·PC得:a2+x2·a=2a2+x2·63a,∴x=a,即PA=a,∴PC=3a.又CE=a2-63a2=33a,∴PEPC=23,∴GECD=PEPC=23,即GE=23CD=23a,∴AF=23a.立体几何中的探索性问题典例:(12分)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.思维启迪(1)利用DE∥PC证明线面平行;(2)利用平行关系和已知PC⊥AB证明DE⊥DG;(3)Q应为EG中点.规范解答(1)证明因为D,E分别是AP,AC的中点,所以DE∥PC.又因为DE平面BCP,所以DE∥平面BCP.[3分](2)证明因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形.[7分](3)解存在点Q满足条件,理由如下:[8分]连接DF,EG,设Q为EG的中点,由(2)知,DF∩EG=Q,且QD=QE=QF=QG=12EG.分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN.与(2)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN=12EG,所以Q为满足条件的点.[12分]解决立体几何中的探索性问题的步骤:第一步:写出探求的最后结论.第二步:证明探求结论的正确性.第三步:给出明确答案.第四步:反思回顾,查看关键点、易错点和答题规范.温馨提醒(1)立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.(2)这类问题也可以按类似于分析法的格式书写步骤:从结论出发“要使……成立”,“只需使……成立”.方法与技巧1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.失误与防范1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.A组专项基础训练(时间:40分钟)一、选择题1.若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a成90°角答案A解析若直线a平行于平面α,则α内既存在无数条直线与a平行,也存在无数条直线与a异面且垂直,所以A不正确,B、D正确.又夹在相互平行的线与平面间的平行
本文标题:2015年高中数学步步高大一轮复习讲义(文科)第八章 8.3
链接地址:https://www.777doc.com/doc-4106243 .html