您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 解三角形课件.ppt
第十讲解三角形ABCabc△ABC中:A+B+C=(1)(2)22CBA22C(3)BAbaBAsinsinRCcBbAa2sinsinsin正弦定理:CRcBRbARasin2sin2sin2(边化角)RcCRbBRaA2sin2sin2sin(角化边)从理论上正弦定理可解决两类问题:1.两角和任意一边,求其它两边和一角;2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角。ABCaABCab已知两边和其中一边对角解斜三角形有两解或一解(见图示)CABbaCABbaCABbaCAbaa1B2Ba=bsinA一解bsinAab两解ab一解一解ab2accbacosC2acbcacosB2bcacbcosA222222222余弦定理:求角CabbacBaccabAbccbacos2cos2cos2222222222求边余弦定理可解决两类问题:1.已知三边求三角;2.已知两边和它们的夹角,求此角对边,进而可求其它角。ABCbcaABCbc面积公式:BacAbcCabSsin21sin21sin21ABCbc典型例题分析:例1.在△ABC中,角均为锐角,且则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形,sincosBA答案:cossin()sin,,22AABAB都是锐角,,,222ABABC则选C训练、在锐角△ABC中,求证:CBACBAcoscoscossinsinsin证明:∵△ABC是锐角三角形,∴即,2AB022ABsinsin()2AB∴即sincosAB同理sincosBCsincosCA,CBACBAcoscoscossinsinsin∴ABCBabsin2A0300600060120或0015030或例2、在△中,若则等于().B.C.D.A.答案:012sin,sin2sinsin,sin,302baBBABAA或0150选D例3、在△ABC中,,则的最大值是________。,26AB030CACBCCAB,,sinsinsinsinsinsinACBCABACBCABBACBAC∵解:ACBC∴2(62)(sinsin)4(62)sincos22ABABABmax4cos4,()42ABACBC例4、在△ABC中,若则△ABC的形状是什么?,coscoscosCcBbAa解:coscoscos,sincossincossincosaAbBcCAABBCCsin2sin2sin2,2sin()cos()2sincosABCABABCCcos()cos(),2coscos0ABABABcos0A或cos0B得或2A2B所以△ABC是直角三角形。例5、在△ABC中,若,则求证:。0120BA1cabcba分析:要证:1cabcba只要证:2221aacbbcabbcacc即:222abcab而∵0120BA∴060C2222220cos,2cos602abcCabcababab∴原式成立。例6、在△ABC中,若,则求证:223coscos222CAbac2acb证明:∵223coscos222CAbac即:sinsincossinsincos3sinAACCCAB∴sinsinsin()3sinACACB即:sinsin2sinACB∴1cos1cos3sinsinsin222CABAC2acb即:例7、在△ABC中,若则△ABC的形状是______________。21(1cos21cos2)cos()1,2ABAB21(cos2cos2)cos()0,2ABAB2cos()cos()cos()0ABABABcoscoscos0ABC例8、在△ABC中,若,则的值是_________。acb2BBCA2coscos)cos(22,sinsinsin,bacBAC分析:BBCA2coscos)cos(由得:2coscossinsincos12sinACACBBcoscossinsincos12sinsinACACBACcoscossinsincos1ACACBcos()cos11ACB例9、如果△ABC内接于半径为的圆,且求△ABC的面积的最大值。,sin)2()sin(sin222BbaCAR解:2sinsin2sinsin(2)sin,RAARCCabB222sinsin(2)sin,2,aAcCabBacabb222222022,cos,4522abcabcabCCab122sin2sin2sin244SabCabRARB222sin2sin2sinsin4RARBRAB222sin2sin2sinsin4RARBRAB212[cos()cos()]2RABAB22122[cos()]2222(1)22RABR2max212SR此时取得等号AB例10、已知△ABC的三边且,求cba2,2CAbca::abc解:sinsin2sin,2sincos4sincos2222ACACACACACB12147sincos,cos,sin2sincos222424224BACBBBB33371sinsin()sincoscossin4444ABBB71sinsin()sincoscossin4444CBBB::sin:sin:sinabcABC)77(:7:)77(3,,,24242BBACACBAC例11、在△ABC中,若()()3abcabcac且,边上的高为,求角的大小与边的长。tantan33ACAB43,,ABC,,abc解:22201()()3,,cos,602abcabcacacbacBBtantan33tan(),3,1tantan1tantanACACACACtantan23ACtantan33AC又得tan1tan23tan1tan23AACC或即:000075454575AACC或当时,0075,45AC434(326),8(31),8sinbcaA当时,0045,75AC4346,4(31),8sinbcaA
本文标题:解三角形课件.ppt
链接地址:https://www.777doc.com/doc-4119770 .html