您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 第十二章北航-材料力学-全部课件-习题答案
1第十二章弯曲问题进一步研究12-1在梁的图示横截面上,弯矩M=10kN·m。已知惯性矩Iy=Iz=4.7×106mm4,惯性积Iyz=2.78×106mm4,试计算最大弯曲正应力。问题3-2图解:1.确定危险点位置截面的主形心轴u与v如图b所示,其方位角为45根据惯性矩转轴公式,得截面的主形心惯性矩为46464646m1053.7m1097.109sin)m1078.2(m1075.4sin2yzyvuIIII将弯矩M沿主形心轴u与v分解,得相应分量分别为mN1059.215sinm)N1010(33uMmN1066.915m)cosN1010(33vM于是得中性轴的方位角为8144)m107.53)(mN1059.2()m10m)(1.97N1066.9(arctanarctan463463vuuvIMIM其方位如图b所示。可见,在截面的角点a与b处,分别作用有最大弯曲拉应力与最大弯曲压应力。2.最大弯曲应力计算在坐标系C-yz内,角点a的坐标为m084.0ay,m020.0az在坐标系C-uv内,该点的坐标则为m0735.0sincosaaazyum0453.0sincosaaayzv2于是得角点a处的弯曲正应力为MPa156m1053.7)m0753.0)(mN1066.9(m1097.1)m0453.0)(mN1059.2(463463vavuauaIuMIvM角点b位于坐标轴v,其纵坐标为m0509.0bv因此,该点处的弯曲正应力为MPa9.66m1097.1)m0509.0)(mN1059.2(463ububIvM可见,最大弯曲正应力为MPa156maxa12-4图示截面薄壁梁,剪力FSy=5kN。试画弯曲切应力分布图,并计算最大弯曲切应力。题12-4图解:设形心C示如图12-4(1),则图12-4m025.0m2010.0100.0050.0010.0100.0Cy464223m1008.2m)025.0100.0010.0025.0100.0010.012100.0010.0(zI31411105.2025.0010.0ZS)21025.0(010.0025.0100.0010.0222ZS223245105105.2105.2MPa00.3Pa1000.3m010.01008.2N1025.11056265311max,Smax,1zzyISFMPa75.6Pa1075.6m010.01008.2N1081.21056265322max,Smax,2zzyISF弯曲切应力分布图示如图12-4(2),MPa75.6max12-5一薄壁梁,其横截面如图所示,剪力FSy=40kN,壁厚=10mm。试:(1)计算A,B与D三点处的弯曲切应力;(2)确定截面的剪心位置。题12-5图解:(1)算弯曲切应力坐标示如图12-5。4图12-5由图可知,454323m10335.3m]12010.0100.02100.0010.0100.0212200.0010.02[zI35322,m1025.1m050.02010.02)(AAzyS3432,m10875.1m)075.0050.0010.0100.0100.0010.0100.02010.0()(BzS据公式zzISFS得MPa499.1Pa10499.1m010.010335.3N1025.1104062553AMPa5.22Pa1025.2m010.010335.3N10875.1104072543BMPa5.22BD(因为上下对称)(2)确定截面的剪心位置因为上下对称,所以剪心必在z轴上,问题归结为求ze。据合力矩定理,取G点为矩心(见图12-5),有200.02100.021SFFeFzy其中,zyzyIFIFqFS63S100.00111106667.13100.0005.0d5zyzyIFIFqFS533S100.00222100000.1100.0005.0100.0005.0d于是,)(mm70.0m070.0m100000.1200.0106667.1200.010335.31m200.02100.0156521S腹板形心左侧FFFeyz12-6试指出图示截面的剪心位置。题12-6图解:(a)双对称截面,剪心与形心重合;(b)角钢形截面,剪心在二边条中心线相交处;(c)T形截面,剪心在翼缘中心线与腹板中心线相交处。12-9试确定图示各截面的剪心位置。题12-9图(a)解:由图12-9a(1)可知,sindcos)(20000RRRSz2π30RIz6因此,0SSπsin2)()(RFISFqyzzy图12-9(a)如图12-9a(2)所示,以圆心O为矩形,根据合力矩定理可知,π4dπsin2d)(0Sπ0π00S00SRFRFRqReFyyzy由此得,π40Rez(b)解:设剪力yFS作用于剪心E(见图12-9b),有yyyFFFS2S1S及yyFhhhFS3231322S其中,1SyF和2SyF分别为左、右腹板分担的剪力。图12-9(b)7对左腹板形心C1取矩,有bFzFyey2SS由此得bhhhbFFzyye323132S2S(在左翼缘形心右侧)12-10图示用钢板加固的木梁,承受载荷F=10kN作用,钢与木的弹性模量分别为Es=200GPa与Ew=10GPa。试求钢板与木梁横截面上的最大弯曲正应力以及截面C的挠度。题12-10图解:以钢为基本材料,模量比为201swEEn等效截面示如图12-10,其形心坐标为m1525.0m]010.0100.0200.0005.00.2050.0100.1000.1000.2000.005[Cy该截面的惯性矩为4642323m1085.8m]1525.0205.0010.0100.012010.0100.0100.01525.0200.0005.012200.0005.0[zI由此得MPa3.43Pa1033.4m1085.83N1525.0210.0110102210.07263maxtmax,szCIyMMPa74.5Pa1074.5m1085.8320N1525.011010216263maxcmax,wzCIynM8图12-10最后,根据公式)(6222blxlEIFbxw求挠度Cw。这里,.,m,3m,1m,2szIIEElbax得36942223222smN1085.81020036mN)132(211010)(6blaIlEFbawzCmm51.2m1051.2312-11图示截面复合梁,在其纵向对称面内,承受正弯矩M=50kN·m作用。已知钢、铝与铜的弹性模量分别为Est=210GPa,Eal=70GPa与Eco=110GPa,试求梁内各组成部分的最大弯曲正应力。题12-11图(a)解:以钢为基本材料,模量比为31stalEEn等效截面示如图12-11a,其形心坐标为9m1786.0m200.0100.03100.0100.0m200.0200.0100.03050.0100.0100.023Cy该截面的惯性矩为44423223m10337.1m]1786.0200.0200.0100.012200.0100.0050.01786.0100.031312100.0100.0[zI由此得MPa3.22Pa1023.2m10337.13N1786.010507243cmax,alzCInMyMPa4.45Pa1054.4m10337.1N1214.01050300.07243tmax,stzCIyM图12-11(b)解:以钢为基本材料,模量比分别为31stal1EEn2111stco2EEn等效截面示如图12-11b,其形心坐标为m1603.0m)2111100.0100.0100.0100.03100.0100.0(m)2111250.0100.0100.0150.0100.0100.03050.0100.0100.0(23Cy该截面的惯性矩为1045422323223m1092.9m]211603.0250.0100.0112112100.0100.011150.01603.0100.0100.012100.0100.03050.01603.0100.0312100.0100.0[zI由此得MPa9.26Pa1069.2m1092.93N1603.0105072531cmax,alzCIMynMPa4.30Pa1004.3m1092.9N0603.01050100.07253cmax,stzCIyMMPa9.36Pa1069.3m1092.921N1397.0105011300.072532tmax,cozCIyMn(c)解:根据alstMMM及alalalstststIEMIEM得MM4248.0stMM5752.0al由此得MPa2.108Pa10082.1P)100.0150.0π(075.06410505752.08443max,alaMPa216Pa1016.2Pa100.0π3210504248.0833maxst,12-12图示简支梁,承受均布载荷作用,该梁由木材与加强钢板组成。已知载荷集度q=40kN/m,钢与木的弹性模量分别为Es=200GPa与Ew=10GPa,许用应力分别为[s]=160MPa与[w]=10MPa,试确定钢板厚度。11题12-12图解:mN108mN4104081814232maxqlM4343sm10659.3m12280.02I44423wm10488.1m)110.0060.0100.012060.0100.0(2IPa10160Pa10488.1101010659.310200140.0102001086493994wwssmaxsmaxsIEIEyEM由此得17.1mmm0171.0又Pa1010Pa10488.1101010659.310200140.010101086493994wwssmaxwmaxwIEIEyEM由此得13.27mmm01327.0结论:确定钢板厚度mm1.17。12-14图示夹层简支梁,承受集度为q=50kN/m的均布载荷作用。试求梁内的最大弯曲正应力与最大弯曲切应力。题12-14图解:1.求最大弯矩M和最大剪力FS281qlMqlF21S2.计算max参看书中图12-22,有12)(330fhhbIzmax=43322333002f0
本文标题:第十二章北航-材料力学-全部课件-习题答案
链接地址:https://www.777doc.com/doc-4177393 .html