您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 基于BP神经网络的车型识别 外文翻译
一、外文资料LicensePlateRecognitionBasedOnPriorKnowledgeAbstract-Inthispaper,anewalgorithmbasedonimprovedBP(backpropagation)neuralnetworkforChinesevehiclelicenseplaterecognition(LPR)isdescribed.Theproposedapproachprovidesasolutionforthevehiclelicenseplates(VLP)whichweredegradedseverely.Whatitremarkablydiffersfromthetraditionalmethodsistheapplicationofpriorknowledgeoflicenseplatetotheprocedureoflocation,segmentationandrecognition.Colorcollocationisusedtolocatethelicenseplateintheimage.Dimensionsofeachcharacterareconstant,whichisusedtosegmentthecharacterofVLPs.TheLayoutoftheChineseVLPisanimportantfeature,whichisusedtoconstructaclassifierforrecognizing.Theexperimentalresultsshowthattheimprovedalgorithmiseffectiveundertheconditionthatthelicenseplatesweredegradedseverely.IndexTerms-Licenseplaterecognition,priorknowledge,vehiclelicenseplates,neuralnetwork.I.INTRODUCTIONVehicleLicense-Plate(VLP)recognitionisaveryinterestingbutdifficultproblem.Itisimportantinanumberofapplicationssuchasweight-and-speed-limit,redtrafficinfringement,roadsurveysandparksecurity[1].VLPrecognitionsystemconsistsoftheplatelocation,thecharacterssegmentation,andthecharactersrecognition.Thesetasksbecomemoresophisticatedwhendealingwithplateimagestakeninvariousinclinedanglesorundervariouslighting,weatherconditionandcleanlinessoftheplate.Becausethisproblemisusuallyusedinreal-timesystems,itrequiresnotonlyaccuracybutalsofastprocessing.MostexistingVLPrecognitionmethods[2],[3],[4],[5]reducethecomplexityandincreasetherecognitionratebyusingsomespecificfeaturesoflocalVLPsandestablishingsomeconstrainsontheposition,distancefromthecameratovehicles,andtheinclinedangles.Inaddition,neuralnetworkwasusedtoincreasetherecognitionrate[6],[7]butthetraditionalrecognitionmethodsseldomconsiderthepriorknowledgeofthelocalVLPs.Inthispaper,weproposedanewimprovedlearningmethodofBPalgorithmbasedonspecificfeaturesofChineseVLPs.TheproposedalgorithmovercomesthelowspeedconvergenceofBPneuralnetwork[8]andremarkableincreasestherecognitionrateespeciallyundertheconditionthatthelicenseplateimagesweredegradeseverely.II.SPECIFICFEATURESOFCHINESEVLPSA.DimensionsAccordingtotheguidelineforvehicleinspection[9],alllicenseplatesmustberectangularandhavethedimensionsandhaveall7characterswritteninasingleline.Underpracticalenvironments,thedistancefromthecameratovehiclesandtheinclinedanglesareconstant,soallcharactersofthelicenseplatehaveafixedwidth,andthedistancebetweenthemediumaxesoftwoadjoiningcharactersisfixedandtheratiobetweenwidthandheightisnearlyconstant.Thosefeaturescanbeusedtolocatetheplateandsegmenttheindividualcharacter.B.ColorcollocationoftheplateTherearefourkindsofcolorcollocationfortheChinesevehiclelicenseplate.ThesecolorcollocationsareshownintableI.TABLEICategoryoflicenseplateColorcollocationsmallhorsepowerplatebluebackgroundandwhitecharactersmotortruckplateyellowbackgroundandblackcharactersmilitaryvehicleandpolicewagonplateblackbackgroundandthewhitecharactersembassyvehicleplatewhitebackgroundandblackcharactersMoreover,militaryvehicleandpolicewagonplatescontainaredcharacterwhichbelongstoaspecificcharacterset.Thisfeaturecanbeusedtoimprovetherecognitionrate.C.LayoutoftheChineseVLPSThecriterionofthevehiclelicenseplatedefinesthecharacterslayoutofChineselicenseplate.AllstandardlicenseplatescontainChinesecharacters,numbersandletterswhichareshowninFig.1.ThefirstoneisaChinesecharacterwhichisanabbreviationofChineseprovinces.ThesecondoneisaletterrangingfromAtoZexcepttheletterI.Thethirdandfourthonesarelettersornumbers.Thefifthtoseventhonesarenumbersrangingfrom0to9only.Howeverthefirstortheseventhonesmayberedcharactersinspecialplates(asshowninFig.1).Aftersegmentationprocesstheindividualcharacterisextracted.Takingadvantageofthelayoutandcolorcollocationpriorknowledge,theindividualcharacterwillenteroneoftheclasses:abbreviationsofChineseprovincesset,lettersset,lettersornumbersset,numberset,specialcharactersset.(a)Typicallayout(b)SpecialcharacterFig.1ThelayoutoftheChineselicenseplateIII.THEPROPOSEDALGORITHMThisalgorithmconsistsoffourmodules:VLPlocation,charactersegmentation,characterclassificationandcharacterrecognition.ThemainstepsoftheflowchartofLPRsystemareshowninFig.2.Firstlythelicenseplateislocatedinaninputimageandcharactersaresegmented.Theneveryindividualcharacterimageenterstheclassifiertodecidewhichclassitbelongsto,andfinallytheBPnetworkdecideswhichcharacterthecharacterimagerepresents.Fig.2TheflowchartofLPRsystemImageacquisitionPlatelocationCharacterssegmentationsegmentationclassifierChinesecharacterLetterLetterornumberNumberSpecialcharacterCharactersrecognition辽BB092警ChinesecharactercharacterLetterLetterornumberSpecialredcharacter辽BA9083ChinesecharactercharacterLetterLetterornumberNumberA.Preprocessingthelicenseplate1)VLPLocationThisprocesssufficientlyutilizesthecolorfeaturesuchascolorcollocation,colorcentersanddistributionintheplateregion,whicharedescribedinsectionII.Thesecolorfeaturescanbeusedtoeliminatethedisturbanceofthefakeplate’sregions.TheflowchartoftheplatelocationisshowninFig.3.Fig.3Theflo
本文标题:基于BP神经网络的车型识别 外文翻译
链接地址:https://www.777doc.com/doc-4224219 .html