您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 人教版高中数学【必修三】[知识点整理及重点题型梳理]-随机事件的概率-提高
精品文档用心整理资料来源于网络仅供免费交流使用人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习随机事件的概率【学习目标】1.了解必然事件,不可能事件,随机事件的概念;2.正确理解事件A出现的频率的意义;3.正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系.【要点梳理】要点一、随机事件的概念在一定的条件下所出现的某种结果叫做事件.(1)必然事件:在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;确定事件:必然事件与不可能事件统称为相对于条件S的确定事件,简称确定事件.(3)随机事件:在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件.要点诠释:1.随机事件是指在一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此强调同一事件必须在相同的条件下进行研究;2.随机事件可以重复地进行大量实验,每次的实验结果不一定相同,但随着实验的重复进行,其结果呈现规律性.要点二、随机事件的频率与概率1.频率与频数在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数An为事件A出现的频数,称事件A出现的比例()AnnfAn为事件A出现的频率。2.概率事件A的概率:在大量重复进行同一试验时,事件A发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0.要点诠释:(1)概率从数量上反映了随机事件发生的可能性的大小.求事件A的概率的前提是:大量重复的试验,试验的次数越多,获得的数据越多,这时用Ann来表示()PA越精确。(2)任一事件A的概率范围为0()1PA≤≤,可用来验证简单的概率运算错误,即若运算结果概率不在[01],范围内,则运算结果一定是错误的.精品文档用心整理资料来源于网络仅供免费交流使用3.概率与频率的关系(1)频率是概率的近似值。随着试验次数的增加,频率会越来越接近概率,在实际问题中,事件的概率未知时,常用频率作为它的估计值。(2)频率是一个随机数频率在试验前不能确定,做同样次数的重复试验得到的频率可能相同也可能不同。(3)概率是一个确定数概率是客观存在的,与每次试验无关。(4)概率是频率的稳定值随着试验次数的增加,频率就会逐渐地稳定在区间[0,1]中的某个常数上,这个常数就是概率。要点三、事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做对立事件;(3)包含:事件A发生时事件B一定发生,称事件A包含于事件B(或事件B包含事件A);要点诠释:从集合角度理解互斥事件为两事件交集为空,对立事件为两事件互补.若两事件A与B对立,则A与B必为互斥事件,而若事件A与B互斥,则不一定是对立事件.“对立”只能是两个事件之间的关系,不会出现多个事件之间相互“对立”.要点四、事件间的运算(1)并事件(和事件)若某事件的发生是事件A发生或事件B发生,则此事件称为事件A与事件B的并事件.注:当A和B互斥时,事件A+B的概率满足加法公式:P(A+B)=P(A)+P(B)(A、B互斥);且有P(A+A)=P(A)+P(A)=1.(2)交事件(积事件)若某事件的发生是事件A发生和事件B同时发生,则此事件称为事件A与事件B的交事件.要点诠释:(1)在应用互斥事件的概率加法公式时,需先判断相关事件是否互斥,特别是在两事件中有一个或两个是由多个事件组成的并事件时,需仔细分清并事件中的每一事件是否都与另一事件互斥.在不互斥的事件中应用互斥事件的概率加法公式是本部分易错点之一.(2)在求某些稍复杂的事情的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥的事件的概率的和,二是先求此事件的对立事件的概率.(3)“对立”更多的是一种解题思想,若某个事件的概率不易求解,而其对立事件的概率较易求,则应从其对立事件的概率入手求解,以提高解决问题的效率.“对立”思想推广开来即数学中的“正难则反”的思想,若从某个角度解决问题较复杂,不妨考虑其对立面,往往有较好的效果,如反证法的应用等.要点五、概率的性质(1)任一事件A的概率()PA有:0()1PA≤≤;(2)必然事件B的概率P(B)=1;(3)不可能事件C的概率P(C)=0.要点诠释:概率性质的掌握可以类比频率的性质与概率的关系.【典型例题】类型一:概率的意义例1.掷一枚硬币,连续出现10次正面朝上,试就下面两种情况进行分析.精品文档用心整理资料来源于网络仅供免费交流使用(1)若硬币是均匀的,出现正面向上的概率是12,由于连续出现10次正面,则下次出现反面朝上的概率必大于12,这种理解正确吗?(2)若就硬币是否均匀作出判断,你更倾向于哪一种结论?【答案】(1)不正确(2)硬币不均匀【解析】(1)对于均匀硬币,抛掷一次出现正面向上的概率是12,大多数次抛硬币时,大约有12出现正面朝上,而对于抛掷一次来说,其结果是随机的,多次重复抛硬币试验,其结果又呈现一定的规律性,实际上,连续抛掷10次均正面朝上的概率为1010.00097662.尽管比较小,但发生的可能性是有的.对于第11次来说,其出现正面的概率仍为12.(2)由(1)知,对于均匀硬币来说,连续10次出现正面朝上的概率很小,几乎是不可能发生的,但这个事件却发生了.根据极大似然法,如果就硬币是否均匀作出判断,我们更倾向于这一枚硬币是不均匀的,即反面可能重一些.【总结升华】随机事件在一次试验中发生与否是随机的,但随机性中含有规律性:即随着试验次数的增加,随机事件发生的频率会越来越接近于该随机事件发生的概率.认识了这种随机}生中的规律性,就能使我们比较准确地预测随机事件发生的可能性概率是事件的本质属性,不随试验次数的变化而变化,频率是概率的近似值,同频率一样,概率也反映了事件发生可能性的大小。但概率只提供了一种“可能性”,并不是精确值.举一反三:【变式1】某射手击中靶心的概率是0.9,是不是说明他射击10次就一定能击中9次?【答案】不一定【解析】从概率的统计定义出发,击中靶心的概率是0.9并不意味着射击10次就一定能击中9次,只有进行大量射击试验时,击中靶心的次数约为910n,其中n为射击次数,而且当n越大时,击中的次数就越接近910n。类型二:频率与概率例2.某人做了三次向桌面投掷硬币的试验,这三次试验的结果如下:第一次试验次数1000正面向上的次势499反面向上的次数501第二次试验次数1000正面向上的次数497反面向上的次数503第三次试验次数3000正面向上的次数1497反面向上的次数1503(1)就这三个表格,谈一谈你对频率是一个随机数的认识.(2)设想:把这三个表格里面的试验次数不断地增加.预测1:每一个表格里面的试验次数增至原来的10倍时,这三次试验中,正面向上的频率是0.5;预测2:随着试验次数的不断增加,这三次试验中,精品文档用心整理资料来源于网络仅供免费交流使用反面向上的概率都是0.5.预测1、预测2正确吗?【解析】(1)第一次试验中,正面向上的频率14991000f.第二次试验中,正面向上的频率24971000f.第三次试验中,正面向上的频率3149749930001000f.12ff,说明相同的试验次数下频率可以不同;13ff,说明不同的试验次数下频率可以相同以≠以,说明不同的试验次数下频率可以不同.综上,就本例提供的信息而言,频率是一个随机数.(2)预测1不正确.以第一次试验为例,当试验次数增至原来的10倍时,试验次数为10000,这时正面向上的频率是0.5,也就是正面向上的次数刚好是5000,这种说法是不对的,因为它有可能是4999,4998,…,也有可能是5001,5002,…,当然不排除它确有可能是5000.综上,预测1不正确.预测2正确.当试验次数不断地增加时,反面向上的频痒就会逐渐地稳定在常数0.5上,即三次试验中,反面向上的概率都是0.5.【总结升华】频率()nfA依赖于试验次数n、频率nA,即()AnnfAn,它是一个随机数.概率P(A)是指随着试验次数n的增加,频率()nfA稳定于区间[0,1]中的一个常数,概率是一个确定的数,它是客观存在的,与每次试验无关.例如,本例的第(2)小题的预测1说明了频率与试验次数、频数有关,它是一个随机数,预测2说明了概率与每次试验无关,它是客观存在的一个确定的数.举一反三:【变式1】如图所示,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所用时间(分钟)10~2020~3030~4040~5050~60选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.【答案】(1)0.44(2)略(3)甲应选择L1;乙应选择L2【解析】(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人,∴用频率估计相应的概率为0.44.(2)选择L1的有60人,选择如的有40人,故由调查结果得频率为:所用时间(分钟)10~2020~3030~4040~5050~60L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1(3)A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.精品文档用心整理资料来源于网络仅供免费交流使用由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),∴甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1),∴乙应选择L2.类型三:随即事件的关系例3.某县城有甲、乙两种报纸供居民订阅,记事件A为“只订甲报”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报”,事件E为“一种报纸也不订”.判断下列事件是不是互斥事件;如果是,再判断它们是不是对立事件:(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.【答案】(1)不是互斥事件(2)对立事件(3)不是互斥事件(4)不是互斥事件(5)不是互斥事件【解析】(1)由于事件C“至多订一种报纸”中包括“只订甲报”,即事件A与事件C有可能同时发生,故A与C不是互斥事件.(2)事件B“至少订一种报纸”与事件E“一种报纸也不订”是不可能同时发生的,故事件B与E是互斥事件;由于事件B发生会导致事件E一定不发生,且事件E发生会导致事件B一定不发生,故B与E还是对立事件.(3)事件B“至少订一种报纸”中包括“只订乙报”,即有可能“不订甲报”,也就是说事件B和事件D有可能同时发生,故B与D不是互斥事件.(4)事件B“至少订一种报纸”中包括“只订甲报”“只订乙报”“订甲、乙两种报”.事件C“至多订一种报纸”中包括“一种报纸也不订”“只订甲报”“只订乙报”.由于这两个事件可能同时发生,故B与C不是互斥事件.(5)由(4)的分析,事件E“一种报纸也不订”仅仅是事件C中的一种可能情况,事件C与事件E可能同时发生,故C与E不是互斥事件.【总结升华】一定要区分开对立和互斥的定义,互斥事件:不能同时发生的两个事件叫做互斥事件;对立事件:不能同时发生,但必有一个发生的两个事件叫做对立事件.举一反三:【变式1】判断下列给出的条件,是否为互斥事件,是否为对立事件,并说明理由.从40张扑克牌(红桃、黑桃、方块、梅花点数从1-10各10张)中任取一
本文标题:人教版高中数学【必修三】[知识点整理及重点题型梳理]-随机事件的概率-提高
链接地址:https://www.777doc.com/doc-4563787 .html