您好,欢迎访问三七文档
当前位置:首页 > 研究生/硕士 > 考研英语 > 2019考研数学二考试真题答案解析(完整版)
2019考研数学二考试真题答案解析(完整版)来源:文都教育1.(C)3tan~3xxx2.(B)'sincos2sin,sin,yxxxxyxx令0y得0,,xx又因为'sincos,yxxx将上述两点代入得'()0,y所以(,2)是拐点.3.(A)0ed(2)1xxxP发散(A)或000dee|edxxxxxx00ede|011xxx4.(D)解:由条件知特征根为121,特征方程为212()()210,故a=2,b=1,而y*=ex为特解,代入得C=4,选(D)5.因为2222sinxyxy++22221cosxyxy-++2131IIII\因为2222221cos2sinsin22xyxyxy++-+=222222sin2sincos22xyxyxy+++=因为2222424xyxypp++\2222sincos22xyxy++\22221cossinxyxy\-++32II\321III\选A6.解,必要性()()fxgx,相切于a则''()()()aafagafg ''322''2.()()[1']0()()()()()()()()lim2()()2()22limlimxaxaxayPyagayfxgxfxgxfxgxfagafaxaxe 充分性2''()()()()()()()()()2()()()()()lim()()22limlimxaxxxaxafxgxOfagaxafgfagaxafxgxfagafaga = f(x)与g(x)相切于点a.且曲率相等.选择(B)7.因为0Ax=的基础解系中只有2个向量()24()nrArA\-==-()0rA*\=\选A8.选(C)解:由22AAE+=得22λλ=+,λ为A的特征值,2=-l或1,又1234Aλλλ=,故1231λ=λ=-2λ=,,规范形为222123yyy--,选(C)9.()()02(21)212(21)21000222ln2lim22ln221lim2lim121limeee4exxxxxxxxxxxxxxxxxx®+-+-×+-+++=++-====10.当32tp=时,3333sin11cos12222xypppp=-=+=-=,即为点31,12p÷ç+÷ç÷ç23ddd1d1sin1ddd1cosd1tyytykxtxtxp=-==×===--331111.22322yxyxyxppp÷ç-=---Þ-=-++÷ç÷çÞ=-++在y轴上的截矩为322p+11.2322222;zyyzyyyfffyfffxxxyxx÷ç÷ç÷=-=-=+=+÷çç÷÷çç÷ç32233222222zzyyxyxfyffxyxxyyfyffxxyyfx +=-×+×+=-++÷ç÷=ç÷ç÷ç12.解析:lncos,06yxx2606206600sin1dcos1dcos231secdln|sectan|lnln3ln3323xlxxxxxxxx13.解析:211001212012212120101201222100sin()d(d)d1sindd21sinsind|d21sind21111sind(cos)|(cos11)2244xxxtfxxxtxtttxttxxtxxtxxxxxxx14.解析:1112110011001111112111011112101043221012103403400340034AA=15.解:当0x时22ln2ln()e()e(2ln2)xxxxxfxxfxx¢===+当0x时()eexxfxx¢=+当0x=时0000()(0)e11lim()limlimlime10xxxxxxfxfxfxxx-----+-====-2000()(0)11lim()limlim0xxxxfxfxfxxx----+-==-不存在\有()fx在0x=点不可导.于是2lne(2ln2)0(),0e+e,0xxxxxxfxxxx,不存在ìï+ïïï¢==íïïïïî令()0fx¢=得121,1,exx==-于是有下列表x(,1)-¥--1(-1,0)010,e÷ç÷ç÷ç1e1,e÷ç+¥÷ç÷ç()fx¢-0+不存在-0+()fx¯极小值极大值¯极小值于是有()fx的极小值为2e11(1)1,eeeff-÷ç-=-=÷ç÷ç,极大值为(0)1f=16.解析:令22222222236(1)(1)1(1)1(1)(1)(1)()()=(1)(1)xABCxDxxxxxxxAxxxBxxCxDxxxx-1++=++-++--++-+++++++-++则22236(1)(1)(1)()(1)xAxxxBxxCxDx+=-+++++++-令1x=得93,3BB==令0x=得6ABD=-++令1x=-得324()ABDC=-++-令2x=得12772ABCD=+++解得2,3,2,1ABCD=-===故原式2211212d3dd1(1)1xxxxxxxx+=-++--++232ln1ln(1)1xxxCx=---++++-17.解析:(1)221e2xyxyx¢-=()2222222d()d222221eeed21eeed21ed2exxsxxSxxxxxxyxCxxCxxCxxC--÷ç÷ç=×+÷ç÷ç÷ç÷ç÷ç=×+÷ç÷ç÷ç÷ç=+÷ç÷ç÷=+òòò通解由(1)=e(1)efC=+得0C=所以22()=exfxx×(2)()22222221221222411ededede=e-e222xxxxxVxxxxxppppp÷ç÷ç=×÷ç÷ç÷ç=×==òòò18.(本题满分10分)已知平面区域2234{(,)|||,()}Dxyxyxyy,计算二重积分22ddDxyxxxy.【解析】2234()xyy的极坐标方程为2sinr,由对称性:12222222sin522044222424243524ddsind2dd2[sind]dsind(1cos)dcos(12coscos)dcos21[coscoscos]|3522221424323853212DDDDxyyxyxyyrrrrxyrr2019.设n为正整数,记nS为曲线esinxyx与x轴所围图形的面积,求nS,并求limnnS.解:设在区间[,(1)](0,1,2,,1)kkkn…上所围的面积记为uk,则(1)(1)e|sin|d(1)esindkxkxxkxkkkuxxxx;记=esindxIxx,则edcos(ecoscosde)ecosedsinecos(esinsinde)e(cossin)xxxxxxxxxIxxxxxxxxxxI所以1e(cossin)2xIxxC;因此(1)(1)11(1)e(cossin)|(ee)22kkkkkkkuxx;(这里需要注意cos(1)kk)因此(1)101(1)11eee;221e1111limlim212121nnnknkkknnnnSueeeSeee20.(本题满分11分)已知函数u(x,y)满足22222230uuuxyy,求a,b的值,使得在变换u(x,y)=v(x,y)eax+by之下,上述等式可化为函数v(x,y)的不含一阶偏导数的等式.[解析]e(,)eaxbyaxbyuvvxyaxxe(,)eaxbyaxbyuvvxyayy222222222222eee(,)ee2e(,)ee2e(,)eaxbyaxbyaxbyaxbyaxbyaxbyaxbyaxbyaxbyaxbyuvvvaavxyaxxxxvvavxyaxxuvvbvxybyyy代入已知条件22222230uuuxyy得22222224(34)(223)(,)0vvvvababbvxyxyxy根据已知条件,上式不含一阶偏导,故a=0,3-4b=0即30,4ab21.已知函数()fx在[0,1]上具有二阶导数,且10(0)0,(1)1,()d1fffxx,证明:(1)存在(0,1),使得()0f;(2)存在(0,1),使得()2f.证:(1)设()fx在处取得最大值,则由条件10(0)0,(1)1,()d1fffxx可知()1f,于是01,由费马引理得()0f.(2)若不存在(0,1)hÎ,使()2fh-,则对任何(0,1)xÎ,有()2fx³-,由拉格朗日中值定理得,()()()()fxffcxxx-=-,C介于x与x之间,不妨设x,()2()fxxx¢£--,积分得200()d2\()d1fxxxxxxxx¢£--=,于是()(0)1ffx-,即()1fx,这与()1fx相矛盾,故存在(0,1),hÎ使()2fh-.22.解:123123(,,,,,)2222111101102123443313111101011022001111aaaaaaaa①若a=1,则123123123123(,,)(,,)(,,,,,)rrr此时向量组(Ⅰ)与(Ⅱ)等价,令123123(,,),(,,)AB,则102123(,)011022000000AB此时112123122232②若a=-1,则()2(,)3rArAB,向量组(Ⅰ)与(Ⅱ)不等价.③若1,1a,则121100111123(,)01011111001111aaaaaABaaaa此时11232123312311111121231111aaaaaaaaaaaaaaaaaa23.2212102201000200AxBy与相似(1)1231~413()()242210(2)010(1)(2)(2)00021,2,21211211201242000001210001001000022ABxyxtrAtrByxyEBxxAEAET时, =(-,,)时,2311321410440125201050211240000000004212122102221200100112004000000211,122040AEP
本文标题:2019考研数学二考试真题答案解析(完整版)
链接地址:https://www.777doc.com/doc-4700381 .html