您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 高等数学常用公式汇总――――
高数常用公式平方立方:22222222332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(abababaabbabaabbabababaabbababaabbaababbabaababbababcabbcca 21221)(9)()(),(2)nnnnnnabcababaababbn 倒数关系:sinx·cscx=1tanx·cotx=1cosx·secx=1商的关系:tanx=sinx/cosxcotx=cosx/sinx平方关系:sin^2(x)+cos^2(x)=1tan^2(x)+1=sec^2(x)cot^2(x)+1=csc^2(x)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]降幂公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα两角和差:sin(α±β)=sinα·cosβ±cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)积化和差:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]特殊角的三角函数值:06432π232π)(f)0()30()45()60()90()180()270()360(sin02/12/22/310-10cos12/32/22/10-101tan03/113不存在0不存在0cot不存在313/10不存在0不存在等价代换:(1)xsinx~(2)xtanx~(3)xarcsinx~(4)xarctanx~(5)2x21cosx1~(6)x)x1(ln~(7)x1ex~(8)ax1)x1(a~基本求导公式:(1) 0)(C,C是常数(2)1)(xx(3)aaaxxln)((4)axxaln1)(log(5)xxcos)(sin(6)xxsin)(cos(7)xxx22seccos1)(tan(8)xxx22cscsin1)(cot(9)xxxtan)(sec)(sec(10)xxxcot)(csc)(csc(11))(arcsinx211x(12)211)(arccosxx(13)211)(arctanxx(14)21(arccot)1xx(15)x21x)((16)2x1x1)(基本积分公式:(1)0dxC(2)为常数kCkxkdx(3)111Cxdxx(4)Cxdxx||ln1(5)Caadxaxxln(6)Cedxexx(7)Cxxdxsincos(8)Cxxdxcossin(9)Cxxdxxdxtanseccos22(10)Cxxdxxdxcotcscsin22(11)Cxxdxxsectansec(12)Cxxdxxcsccotcsc(13)Cxxdxarctan12或(Cxarcxdxcot12)(14)Cxxdxarcsin12或(Cxxdxarccos12)(15)Cxxdx|cos|lntan,(16)Cxxdx|sin|lncot,(17)Cxxxdx|tansec|lnsec,(18)Cxxdxxc|cotcsc|lnsc,
本文标题:高等数学常用公式汇总――――
链接地址:https://www.777doc.com/doc-4992183 .html