您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 26第2课时一元一次不等式组的应用北师大版八年级下册数学知识点同步练习
2.6一元一次不等式组第2课时一元一次不等式组的应用一、解答题1.某城市的一种出租车起价是10元(即行驶路程在5km以内都需付费10元),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少?2.一玩具厂生产甲、乙两种玩具,已知造一个甲种玩具需用金属80克,塑料140克;造一个乙种玩具需用金属100克,塑料120克.若工厂有金属4600克,塑料6440克,计划用两种材料生产甲、乙两种玩具共50件,求甲种玩具件数的取值范围.3.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元..,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?二、能力提升4.为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:A型B型价格(万元/台)1210处理污水量(吨/月)240200年消耗费(万元/台)11经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)5.某厂计划2004年生产一种新产品,下面是2003年底提供的信息,人事部:明年生产工人不多于800人,每人每年可提供2400个工时;市场部:预测明年该产品的销售量是10000~12000件;技术部:该产品平均每件需要120个工时,每件要4个某种主要部件;供应部:2003年低库存某种主要部件6000个.预测明年能采购到这种主要部件60000个.根据上述信息,明年产品至多能生产多少件?6.某宾馆底层客房比二楼少5间,某旅行团有48人.若全部住底层,每间4人,房间不够;每间住5人,有房间没有住满5人.若全部安排在二楼,每间住3人,房间不够;每间住4人,有房间没有住满4人.问该宾馆底层有客房多少间?7.某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池[来源:学_科_网Z_X_X_K]修建费用(万元/个)可供使用户数(户/个)占地面积(m2/个)A型32048B型236政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.三、创新题学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖二等奖三等奖1盒福娃和1枚徽章1盒福娃1枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和徽章前,了解到如下信息:(1)求一盒“福娃”和一枚徽章各多少元;学科网](2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?参考答案1.解:设甲地到乙地的路程大约是xkm,据题意,得[来源:学_科_网Z_X_X_K]1610+1.2(x-5)≤17.2,解之,得10<x≤11,即从甲地到乙地路程大于10km,小于或等于11km.[来源:学科网ZXXK]2.解:设甲种玩具为x件,则甲种玩具为(50-x)件.根据题意得:6440)50(1201404600)50(10080xxxx解得:20≤x≤22答:甲种玩具不少于20个,不超过22个.3.(1)y=3.2-0.2x(2)共有三种方案,A、B两种车厢的节数分别为24节、16节或25节、15节或26节、14节.4.(1)共有三种购买方案,A、B两种型号的设备分别为0台、10台或1台、9台或2台、8台;(2)A、B两种型号的设备分别1台、9台;(3)10年节约资金42.8万元.5.解:设明年可生产产品x件,根据题意得:600006000412000100002400800120xxx解得:10000≤x≤12000答:明年产品至多能生产12000件.6.解:设宾馆底层有客房x间,则二楼有客房(x+5)间.根据题意得:48)5(448)5(3485484xxxx解得:9.6<x<11,所以x=10答:该宾馆底层有客房10间.7.解:(1)32(20)yxx40x(2)由题意可得203(20)264486(20)708xxxx≥①≤②解①得x≥12解②得x≤14∴不等式的解为12≤x≤14∵x是正整数∴x的取值为12,13,14即有3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个.(3)∵y=x+40中,y随x的增加而增加,要使费用最少,则x=12∴最少费用为y=x+40=52(万元)村民每户集资700元与政府补助共计:700×264+340000=524800>520000∴每户集资700元能满足所需要费用最少的修建方案.8.解:(1)设一盒“福娃”x元,一枚徽章y元,根据题意得23153195xyxy解得15015xy答:一盒“福娃”150元,一枚徽章15元.(2)设二等奖m名,则三等奖(10—m)名,216515015(10)1000216515015(10)1100mmmm≥≤解得1041242727m≤≤.∵m是整数,∴m=4,∴10-m=6.答:二等奖4名,三等奖6名.
本文标题:26第2课时一元一次不等式组的应用北师大版八年级下册数学知识点同步练习
链接地址:https://www.777doc.com/doc-5641120 .html