您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 七年级下册数学知识点总结
让读书成为习惯,让学习成为乐趣!1第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。平行线:在同一平面内,不相交的两条直线叫做平行线。同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。内错角:∠2与∠6像这样的一对角叫做内错角。同旁内角:∠2与∠5像这样的一对角叫做同旁内角。命题:判断一件事情的语句叫命题。平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。让读书成为习惯,让学习成为乐趣!2对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。三、定理与性质对顶角的性质:对顶角相等。垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行线的性质:性质1:两直线平行,同位角相等。性质2:两直线平行,内错角相等。性质3:两直线平行,同旁内角互补。平行线的判定:判定1:同位角相等,两直线平行。判定2:内错角相等,两直线平行。判定3:同旁内角相等,两直线平行。四、经典例题例1如图,直线AB,CD,EF相交于点O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度数。让读书成为习惯,让学习成为乐趣!3例2如图,AB∥CD,EF分别与AB、CD交于G、H,MN⊥AB于G,∠CHG=1240,则∠EGM等于多少度?NMHGFEDCBA让读书成为习惯,让学习成为乐趣!4第六章实数一、知识要点1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。2.如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。3.正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。4.平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。(3)0的算术平方根与平方根同为0。5.如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。6.正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。7.求一个数的平方根(立方根)的运算叫开平方(开立方)。8.立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9.一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如502500,525.10.平方表:(自行完成)12=62=112=162=212=22=72=122=172=222=32=82=132=182=232=42=92=142=192=242=52=102=152=202=252=二、题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。3、a本身为非负数,有非负性,即a≥0;a有意义的条件是a≥0。4、公式:⑴(a)2=a(a≥0);⑵3a=3a(a取任何数)。让读书成为习惯,让学习成为乐趣!55、区分(a)2=a(a≥0),与2a=a6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。三、典型例题1.下列语句中,正确的是(D)A.一个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不是正数就是负数D.立方根是这个数本身的数共有三个2.下列说法正确的是(C)A.-2是(-2)2的算术平方根B.3是-9的算术平方根C.16的平方根是±4D.27的立方根是±33.已知实数x,y满足2x+(y+1)2=0,则x-y等于解答:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x-y=2-(-1)=2+1=3.4.求下列各式的值(1)81;(2)16;(3)259;(4)2)4(解答:(1)因为8192,所以±81=±9.(2)因为1642,所以-416.(3)因为253=259,所以259=53.(4)因为22)4(4,所以4)4(2.让读书成为习惯,让学习成为乐趣!65.已知实数x,y满足2x+(y+1)2=0,则x-y等于解答:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x-y=2-(-1)=2+1=3.6.计算(1)64的立方根是4(2)下列说法中:①3都是27的立方根,②yy33,③64的立方根是2,④4832。其中正确的有(B)A、1个B、2个C、3个D、4个7.易混淆的三个数(自行分析它们)(1)2a(2)2)(a(3)33a让读书成为习惯,让学习成为乐趣!7第七章平面直角坐标系一、知识结构图有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识定义有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。三、经典例题例1一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,如果A1求坐标为(3,0),求点A5的坐标。让读书成为习惯,让学习成为乐趣!81●●●●●●ABCDEFOxy-1例3例2如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()A、(0,3)B、(2,3)C、(3,2)D、(3,0)例3如图2,根据坐标平面内点的位置,写出以下各点的坐标:A(),B(),C()。例4如图,面积为12cm2的△ABC向x轴正方向平移至△DEF的位置,相应的坐标如图所示(a,b为常数),(1)、求点D、E的坐标(2)、求四边形ACED的面积。例5过两点A(3,4),B(-2,4)作直线AB,则直线AB()A、经过原点B、平行于y轴C、平行于x轴D、以上说法都不对ABC例2让读书成为习惯,让学习成为乐趣!9第八章二元一次方程组一、知识结构图设未知数,列方程解代入法方加减法程(消元)组检验二、知识定义二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a≠0,b≠0)。二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。实际问题数学问题(二元或三元一次方程)实际问题的答案数学问题的解(二元或三元一次方程组的解)让读书成为习惯,让学习成为乐趣!10三、经典例题例1用加减消元法解方程组,由①×2—②得。例2如果是同类项,则、的值是()A、=-3,=2B、=2,=-3C、=-2,=3D、=3,=-2例3计算:例4王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。问王大伯一共获纯利多少元?例5已知关于x、y的二元一次方程组的解满足二元一次方程,求的值。让读书成为习惯,让学习成为乐趣!11第九章不等式与不等式组一、知识结构图设未知数,列不等式(组)解不等式组检验二、知识定义不等式:一般地,用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。不等式的解:使不等式成立的未知数的值,叫做不等式的解。不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。实际问题(包含不等关系)数学问题(一元一次不等式(组))实际问题的答案数学问题的解(不等式(组)的解决)让读书成为习惯,让学习成为乐趣!12三、定理与性质不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变四、经典例题例1当x时,代数代2-3x的值是正数。例2一元一次不等式组的解集是()A.-2<x<3B.-3<x<2C.x<-3D.x<2例3已知方程组的解为负数,求k的取值范围。例4某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0。5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)让读书成为习惯,让学习成为乐趣!13例5某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元。(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。让读书成为习惯,让学习成为乐趣!14第十章数据的收集、整理与描述一、知识结构图制表绘图二、知识定义全面调查:考察全体对象的调查方式叫做全面调查。抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。总体:要考察的全体对象称为总体。个体:组成总体的每一个考察对象称为个体。样本:被抽取的所有个体组成一个样本。样本容量:样本中个体的数目称为样本容量。频数:一般地,我们称落在不同小组中的数据个数为该组的频数。频率:频数与数据
本文标题:七年级下册数学知识点总结
链接地址:https://www.777doc.com/doc-5820390 .html