您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第十九章--一次函数-小结与复习
小结与复习第十九章一次函数1.叫变量,叫常量.2.函数定义:数值发生变化的量数值始终不变的量在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.一、函数一、知识梳理(所用方法:描点法)3.函数的图象:列表法解析式法图象法.4.函数的三种表示方法:列表、描点、连线一次函数一般地,如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.正比例函数特别地,当b=____时,一次函数y=kx+b变为y=___(k为常数,k≠0),这时y叫做x的正比例函数.0kx二、一次函数1.一次函数与正比例函数的概念2.分段函数当自变量的取值范围不同时,函数的解析式也不同,这样的函数称为分段函数.函数字母系数取值(k0)图象经过的象限函数性质y=kx+b(k≠0)b0y随x增大而增大b=0b0第一、三象限第一、二、三象限第一、三、四象限3.一次函数的图象与性质函数字母系数取值(k0)图象经过的象限函数性质y=kx+b(k≠0)b0y随x增大而减小b=0b0第一、二、四象限第二、四象限第二、三、四象限求一次函数解析式的一般步骤:(1)先设出函数解析式;(2)根据条件列关于待定系数的方程(组);(3)解方程(组)求出解析式中未知的系数;(4)把求出的系数代入设的解析式,从而具体写出这个解析式.这种求解析式的方法叫待定系数法.4.由待定系数法求一次函数的解析式求ax+b=0(a,b是常数,a≠0)的解.x为何值时,函数y=ax+b的值为0?从“数”的角度看求ax+b=0(a,b是常数,a≠0)的解.求直线y=ax+b,与x轴交点的横坐标.从“形”的角度看(1)一次函数与一元一次方程5.一次函数与方程、不等式解不等式ax+b>0(a,b是常数,a≠0).x为何值时,函数y=ax+b的值大于0?解不等式ax+b>0(a,b是常数,a≠0).求直线y=ax+b在x轴上方的部分(射线)所对应的横坐标的取值范围.从“数”的角度看从“形”的角度看(2)一次函数与一元一次不等式一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个一次函数,也对应一条直线.(3)一次函数与二元一次方程组方程组的解对应两条直线交点的坐标.1.下列图形中的曲线不表示是的函数的是()vx0Dvx0Avx0CyOBxC一函数的有关概念及图象二、典型题目23yx2.函数中,自变量x的取值范围是()A.x>3B.x<3C.x≤3D.x≥-3B3.星期天下午,小强和小明相约在某公交车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(千米)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2千米B.小强在公共汽车站等小明用了10分钟C.公交车的平均速度是34千米/小时D.小强乘公交车用了30分钟Cx(分)y(千米)4.已知一次函数y=(m-4)x+3-m,当m为何值时,(1)Y随x值增大而减小;(2)直线过原点;(3)直线与直线y=-2x平行;(4)直线不经过第一象限;(5)直线与x轴交于点(2,0)(6)直线与y轴交于点(0,-1)(7)直线与直线y=2x-4交于点(a,2)m<4m=23≤m<4m=3m=5m=-4m=5.5二一次函数的图象与性质5.已知一次函数y=kx+2b+4的图像经过点(-1,-3),k满足等式|k-3|-4=0,且y随x的增大而减小,求这个一次函数的解析式。解:把x=-1,y=-3代入y=kx+2b+4得-7=-k+2b。∵|k-3|-4=0又∵y随x的增大而减小∴k0∴k=-1把k=-7代入-7=-k+2b得b=-4∴这个一次函数的解析式为y=-x-4三一次函数与方程、不等式6.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()yxOy1=x+by2=kx+4PA.x>﹣2B.x>0C.x>1D.x<1【分析】观察图象,两图象交点为P(1,3),当x>1时,y1在y2上方,据此解题即可.【答案】C.13C7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.012302yxyx0123012yxyx0523012yxyx02012yxyxP(1,1)11233-1O2yx-1D8.如图,直线AB与y轴,x轴交点分别为A(0,2)B(4,0)问题1:求直线AB的解析式及△AOB的面积.A2O4Bxy问题2:当x满足什么条件时,y>0,y=0,y<0,0<y<2221xy4AOBS当x<4时,y>0,当x=4时,y=0,当x>4时,y<0,当0<x<4时,0<y<2,四一次函数中数形结合思想方法的应用A2O4Bxy问题3:在x轴上是否存在一点P,使?若存在,请求出P点坐标,若不存在,请说明理由.3PABS17PPP(1,0)或(7,0)问题4:若直线AB上有一点C,且点C的横坐标为0.4,求C的坐标及△AOC的面积.A2O4Bxy0.4CC点的坐标(0.4,1.8)问题5:求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.A2O4BxyEE1.51.5E点的坐标(1,1.5)或(7,-1.5)A2O4Bxy问题6:在x轴上是否存在一点G,使?若存在,请求出G点坐标,若不存在,请说明理由.AOBBOGSS21G(2,1)或(6,-1)GG221xy问题8:x轴上点A(-4,0),B(2,0),若点C在一次函数的图象上,且△ABC是直角三角形,则满足条件点C有()A.1个B.2个C.3个D.4个A2O4ByxCCCC9.如图,在边长为2的正方形ABCD的一边BC上,有一点P从点B运动到点C,设BP=X,四边形APCD的面积为y。(1)写出y与x之间的关系式。(2)是否存在点P使四边形APCD的面积等于3/2。ABCDP五、一次函数与动点问题(1)y=4-x(0≤x≤2);(2)当y=4-x=1.5时,x=2.5不在0≤x≤2范围内,因此不存在点P使四边形APCD的面积为1.5。10.如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,(1)求△ABC的面积;(2)求y关于x的函数解析式;yxO49图2C图1ABDPBC=4AB=510(2)y=2.5x(0<x≤4)y=10(4<x≤9)13y=-2.5x+32.5(9<x<13)(3)当△ABP的面积为5时,求x的值X=2X=1111.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km.如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.4甲队到达小镇用了6小时,途中停顿了1小时甲队比乙队早出发2小时,但他们同时到达乙队出发2.5小时后追上甲队乙队到达小镇用了4小时,平均速度是6km/h4.5123456时间(h)24012路程(km)4.5D五一次函数与实际问题12.“5.12”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿相同路线从广安赶往重灾区平武救援,下图表示其行驶过程中路程随时间的变化图象.(1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的函数关系式(不写出自变量的取值范围);(2)写出客车和出租车行驶的速度分别是多少?(3)试求出出租车出发后多长时间赶上客车?12345x(小时)y(千米)20015010050O出租车客车13.小星以2米/秒的速度起跑后,先匀速跑5秒,然后突然把速度提高4米/秒,又匀速跑5秒.试写出这段时间里他的跑步路程s(单位:米)随跑步时间x(单位:秒)变化的函数关系式,并画出函数图象.解:依题意得s={2x(0≤x≤5)10+6(x-5)(5x≤10)100s(米)50x(秒)①4010s(米)105x(秒)②x(秒)s(米)O····5101040···s=2x(0≤x≤5)s=10+6(x-5)(5x≤10)(1)问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?14、为美化深圳市景,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.解:设搭配A种造型x个,则B种造型为(50-x)个,依题意,得8050(50)34904090(50)2950xxxx3331xx∴31≤x≤33.∵x是整数,x可取31,32,33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.方案①需成本:31×800+19×960=43040(元);方案②需成本:32×800+18×960=42880(元);方案③需成本:33×800+17×960=42720(元).(2)方法一:方法二:成本为y=800x+960(50-x)=-160x+48000(31≤x≤33).根据一次函数的性质,y随x的增大而减小,故当x=33时,y取得最小值为33×800+17×960=42720(元).即最低成本是42720元.课堂小结某些运动变化的现实问题函数建立函数模型定义自变量取值范围表示法一次函数y=kx+b(k≠0)应用图象:一条直线性质:k>0,y随x的增大而增大k<0,y随x的增大而减小数形结合一次函数与方程(组)、不等式之间的关系
本文标题:第十九章--一次函数-小结与复习
链接地址:https://www.777doc.com/doc-6172111 .html