您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 高中生物竞赛辅导:第二章---植物解剖和生理
-1-高中生物竞赛辅导:第二章植物解剖和生理[考点解读]本章研究植物形态构造和生理活动规律,包括植物组织和器官的结构和功能、光合作用和呼吸作用、水分和矿质代谢、生长和发育、生殖五大部分。根据IB0考纲细目和近年来试题的要求,以下从知识条目和能力要求两方面定出具体目标。-2-第一节植物组织的结构和功能植物组织一般分为分生组织、薄壁组织、保护组织、机械组织、输导组织和分泌组织。后五种组织总称为成熟组织或永久组织。-3-1.分生组织分生组织位于植物体生长的部位,细胞都具有持续分裂的能力。按性质来源的不同,分生组织可分为原分生组织、初生分生组织和次生分生组织。按在植物体上的位置,又可分为顶端分生组织、侧生分生组织和居间分生组织(如图-—2-1所示)。原分生组织位于根和茎生长锥的最先端部分,细胞体积小、细胞核大、细胞质浓,有强烈的分裂能力。初生分生组织由原分生组织衍生的细胞组成,细胞仍能分裂,但已开始分化,是原分生组织向成熟组织过渡的组织。次生分生组织是由成熟组织的细胞,经过生理和形态上的变化,重新具有分裂能力,转变而成的,如形成层和木栓形成层。按位置来说,原分生组织和初生分生组织合称为顶端分生组织,由于它们的活动,根和茎不断生长。次生分生组织属于侧生分生组织,它的活动与根、茎的加粗生长有关。侧生分生组织主要存在于裸子植物和木本的双子叶植物,草本双子叶植物和单子叶植物的根和茎没有明显的增粗生长。在禾本科植物茎的基部和葱、韭、松叶及一些植物花轴的基部有居间分生组织。2。薄壁组织-4-薄壁组织又称基本组织,细胞一般较大,细胞壁薄,有大的液泡,细胞排列疏松。在一定条件下可恢复分生能力,转变为次生分生组织。根据功能不同,薄壁组织可分为同化组织、贮藏组织、贮水组织、通气组织和吸收组织等。3。保护组织根据来源和形态特征的不同,保护组织分为表皮和周皮。表皮细胞是生活细胞,一般不含叶绿体,细胞排列紧密。表皮细胞的外壁常因脂肪性的角质侵入而呈角质化。木本植物的根、茎由于多年生长不断增粗,表皮会因器官的增粗而被破坏、脱落,这时周皮代替表皮起保护作用(详见本章第三节)。4.机械组织机械组织起支持作用,主要特征是细胞的次生壁强烈加厚,可分为厚角组织和厚壁组织。厚角组织细胞是生活的细胞,常具叶绿体。最明显的特征是细胞壁不均匀加厚,主要由纤维素组成,是初生壁的性质,壁能随细胞的延伸而扩展。一般分布于幼茎和叶柄内。厚壁组织细胞具有均匀加厚的次生壁,并且常木质化,细胞成熟时,常成为只留细胞壁的死细胞。根据形态的不同,可分为石细胞和纤维两类。5.输导组织输导组织是植物体内运输水分和营养物质的组织,可分为两类:一类是管胞和导管,输送水分和溶于其中的无机盐;另一类是筛管和筛胞,输送有机养分。(1)导管和管胞导管为被子植物输送水分和无机盐的管状结构。组成导管的每一个细胞称为导管分子,导管分子幼时是生活细胞,成熟时原生质体被分解,成为死细胞,细胞间的横壁消失,形成穿孔。根据发育先后和次生壁增厚的方式不同,导管可分为环纹、螺纹、梯纹、网纹和孔纹导管5种(如图1-2—2所示)。-5-蕨类和裸子植物无导管,由管胞输送水分,大多数被子植物中,管胞与导管同时存在。管胞是一个两端楔形的细胞,成熟后为死细胞,水分通过管胞壁上的纹孔,从一个细胞流向相邻的细胞(如图1—2-3所示)。管胞大多具厚的壁,因此兼有支持功能。(2)筛管和筛胞筛管是被子植物输送有机物的管状结构c筛管由许多筛管分子上下连接而成,成熟的筛管分子为特殊的无核生活细胞,细胞质中保留了质体、线粒体及P-蛋白质(筛管分子所特有的蛋白质)等,细胞壁为初生壁性质,端壁及部分侧壁上有许多筛孔,端壁称为筛板。在筛管分子的旁侧有伴胞(图1—2—4),伴胞与筛管分子由同一母细胞经不均等纵裂而来,有细胞核和各种细胞器。裸子植物和蕨类植物无筛管和伴胞,由筛胞输送养分。筛胞是单个两头尖的长形细胞,成熟后细胞核消失,细胞间通过侧壁上的筛域相通。6.分泌组织分泌细胞所组成的组织称为分泌组织。根据分泌物是保存在植物体内还是分泌到植物体外,分为外部的分泌结构和内部的分泌结构。(1)外部的分泌结构常见的类型有腺毛、蜜腺和排水器等。排水器由水孔和通气组织组成,水孔是气孔的变形,保卫细胞失去了开闭运动的能力。(2)内部的分泌结构常见的有分泌细胞、分泌腔、分泌道和乳汁管。分泌细胞通常为薄壁细胞,分泌物积聚于细胞腔内。分泌腔和分泌道是由毗连的细胞构成的腔状或管状结构,它们的形成有两种方式:一种是溶生,由一团分泌细胞解体而成,如柑橘属、桉树属-6-的分泌腔;另一种是裂生,分泌细胞之间的中层溶解,细胞相互分离而成,如松柏类的裂生树脂道,漆树的裂生漆汁道。乳汁管的细胞是生活细胞,细胞壁是初生壁,大多分布于韧皮部中,如三叶橡胶乳汁管。第二节光合作用、呼吸作用和气体交换一、叶一片完全叶包括叶片、叶柄和托叶三部分。缺少其中一部分或两部分,称为不完全叶,如莴苣的叶缺叶柄和托叶,为无柄叶。叶在茎上的排列方式称为叶序。叶序有三种:互生(每节上只生一叶)、对生(每节上生两叶)和轮生(每节上生三叶或三叶以上)。1.双子叶植物叶的结构叶片由表皮、叶肉和叶脉组成(图1—2—5)。(1)表皮无色透明,一般由排列紧密的一层生活细胞组成。在表皮细胞之间分布着许多气孔。双子叶植物的气孔由两个半月形的保卫细胞围成,保卫细胞含有叶绿体,细胞壁在靠近气孔的一面较厚,其他面较薄。当保卫细胞吸水膨大时,向表皮细胞的一方弯曲,气孔张开;保卫细胞失水时,气孔关闭。气孔的开闭能调节气体交换与蒸腾作用。一般草本双子叶植物的气孔,下表皮多于上表皮(如棉、马铃薯);木本双子叶植物的气孔都分布于下表皮(如苹果、夹竹桃、茶);浮水叶的气孔分布在上表皮(如莲、菱);沉水叶一般无气孔(如眼子菜)。此外,植物体上部叶的气孔较下部叶的多,同一叶片近叶尖和中脉部分的气孔较叶基和叶缘的多。-7-(2)叶肉大多数双子叶植物叶由于背腹两面(远轴面或下面为背面,近轴面或上面为腹面)受光情况不同,叶肉具有栅栏组织和海绵组织之分,这种叶称为两面叶或异面叶;叶肉中无这两种组织的分化,或虽有分化,栅栏组织却分布在叶的两面,称为等面叶(如垂柳、桉),(3)叶脉主脉和大侧脉的维管束周围有机械组织,木质部位于近叶腹面,韧皮部位于近叶背面(图1—2-6),中间有短时期活动的形成层。叶脉越分越细,最后形成层和机械组织都消失。2.禾本科植物叶的结构禾本科植物的叶由叶片和叶鞘两部分组成。叶鞘包裹着茎秆,叶鞘和叶片相接处,有一片向上突起的膜状结构,称为叶舌。叶舌能使叶片向外弯曲,更多地接受阳光,并可防止水分、害虫进入叶鞘中。有些禾本科植物在叶鞘上端的两侧与叶片相接处,有突出物,称为叶耳。叶舌和叶耳的有无、形状、大小、色泽可用作鉴定物种的依据。如大麦、小麦、水稻有叶耳、叶舌,稗草无叶耳、叶舌。禾本科植物的叶片也有表皮、叶肉和叶脉三种基本结构。表皮细胞的外壁不仅角质化,还充满硅质。相邻两叶脉之间的上表皮还有特殊的大型薄壁细胞,称为泡状细胞(又称运动细胞,图1—2-7),泡状细胞具有大液泡,与叶片的展开和卷曲有关,可控制水分的蒸腾。-8-上下表皮都有气孔,气孔的保卫细胞呈哑铃型,在保卫细胞外侧还有副卫细胞,如图1—2-8所示。叶肉没有栅栏组织与海绵组织的分化的叶,为等面叶。3.裸子植物针叶的结构针叶表皮细胞壁厚,角质层发达,气孔下陷;叶肉细胞壁内褶,增大了叶绿体的分布面,扩大了光合面积;有明显的内皮层;内皮层以内是转输组织和一个或两个维管束。转输组织由管胞和薄壁细胞组成,是松柏类植物的特征,其作用是在叶肉与维管束之间进行横向运输(图1-2-9)。-9-二、光合作用1.光合色素叶绿体化学成分的显著特点是含有色素。色素可分为三类:叶绿素、类胡萝卜素和藻胆素。藻胆素仅存在于一些藻类中。叶绿素中主要是叶绿素a和b。叶绿素b只存在于高等植物和绿藻中,其他藻类大多没有叶绿素b。各种色素都能吸收日光,少数叶绿素a还能将光能转换为电能,称为作用中心色素;绝大多数色素(包括大部分叶绿素a)只有收集光能的作用,称为聚光色素,它们吸收的光能只有传到作用中心色素后才能起光合作用。叶绿素溶液在透射光下呈绿色,反射光下呈红色,这种现象称为荧光现象。叶绿素的生物合成是以谷氨酸或α-酮戊二酸为原料,在光照条件下还原而成。光照、温度、矿质元素等会影响叶绿素的形成。2.光合作用的机理光合作用过程包括一系列的光化学步骤和物质的转变,大致可分为下列三大步骤:光能的吸收、传递和转换过程(通过原初反应完成);光能转变为活跃的化学能过程(通过电子传递和光合磷酸化完成);活跃的化学能转变为稳定的化学能过程(通过碳同化完成)。前两个步骤基本属于光反应,第三个步骤属于暗反应。高等植物的光合碳同化过程有C3、C4-10-和CAM三条途径。(1)C3途径C3途径是卡尔文等提出的C02同化途径,故称为卡尔文循环。这个循环中的C02受体是核酮糖-1,5—二磷酸(RuBP),在RuBP羧化酶催化下,C02固定后形成的最初产物3—磷酸甘油酸(PGA)是一种三碳化合物,故该途径称为C3途径(图l—2-10)。C3途径是所有植物光合作用碳同化的基本途径。只有C3途径的植物,称为C3植物。(2)C4途径一些起源于热带的植物,如甘蔗、玉米和高梁等,它们固定C02的最初产物不是磷酸甘油酸,而是草酰乙酸(OAA)等四碳二羧酸,故命名为C4途径。通过C4途径固定C02的植物称为C4植物。C4途径的C02受体是叶肉细胞细胞质中的磷酸烯醇式丙酮酸(PEP),在PEP羧化酶催化下,固定C02生成草酰乙酸,草酰乙酸在脱氢酶的作用下被还原为苹果酸(有些品种形成天冬氨酸)。苹果酸离开叶肉细胞,进入维管束鞘细胞,脱羧放出C02,为RuBP固定进入卡尔文循环;脱羧后形成的丙酮酸再回到叶肉细胞,转变为PEP,继续固定C02(图1-2-11)。-11-C4植物实际上是在C3途径的基础上,多一个固定C02途径。(3)CAM(景天科酸代谢)景天科植物如仙人掌、落地生根等的叶子,气孔晚上开放,吸进C02,与PEP结合,形成草酰乙酸,再还原为苹果酸,积累于液泡中。白天气孔关闭,液泡中的苹果酸便运到细胞质,脱羧放出C02,参与卡尔文循环,形成淀粉等(图l—2—12)。因此植物在晚上有机酸含量高,糖类含量下降;白天则相反。这种有机酸合成有日变化的代谢类型称为景天科酸代谢(简称CAM)。这与植物适应干旱地区有关。3.光呼吸光呼吸是指植物在光照下,在光合作用的同时发生吸收02、释放C02的呼吸。一般生活细胞的呼吸在光照或黑暗中都可以进行。黑暗中的呼吸相对地称为暗呼吸。-12-光呼吸的主要过程是细胞过氧化物体中乙醇酸的氧化,乙醇酸来自叶绿体。叶绿体中的RuBP羧化酶既是羧化酶,催化CO2与RuBP结合,又是加氧酶,催化02与RuBP结合。在光照下,02浓度高时,RuBP加氧酶催化02与RuBP结合,产生乙醇酸;乙醇酸进入过氧化物体,被氧化产生甘氨酸;甘氨酸进入线粒体,被分解产生C020图1—2—13是光呼吸的全过程。在整个途径中,02的吸收发生于叶绿体和过氧化物体,C02的放出发生于线粒体中,因此,光呼吸是在叶绿体、过氧化物体和线粒体三种细胞器的协同下完成的。光呼吸使有机物分解成C02,但不产生ATP或NADPH,是一个耗能过程。-13-4.C3植物和C4植物的光合特征一般来说,C4植物比C3植物具有较强的光合作用、较低的光呼吸。这是因为:C4植物的PEP羧化酶对C02的亲和力比C3植物的RuBP羧化酶大得多,C4植物能够利用低浓度的C02(当外界干旱气孔关闭时,C4植物能利用细胞间隙里含量低的C02继续生长)。-14-而且C4植物具有独特的“花环型”结构,叶肉细胞与维管束鞘细胞分工配合,在叶肉细胞内以C4途径固定C02,形成C4-二羧酸向维管束鞘细胞运输,起了“C02”源的作用,为维管束鞘中进行的C3途径提供高浓度的COa,使植物同化C02的能力比C3植物强,光合效率也比较高;另外,高浓度的C02足以和02竞争而使RuBP羧化酶接受C02而不与02结合,因此,C4植物
本文标题:高中生物竞赛辅导:第二章---植物解剖和生理
链接地址:https://www.777doc.com/doc-6576119 .html