您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 北师大版七年级下册数学《期末考试卷》(带答案)
北师大版数学七年级下学期期末测试卷时间:120分钟总分:120分一、选择题(本大题共12个小题,每小题4分,共48分)1.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.310B.110C.19D.182.下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3·a2=a6D.(2x)3=2x33.下列图形是轴对称图形的是()A.B.C.D.4.数据0.000063用科学记数法表示应为()A.6.3×10-5B.0.63×10-4C.6.3×10-4D.63×10-55.已知一个等腰三角形的一个底角为30°,则它的顶角等于()A.30°B.40°C.75°D.120°6.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34°B.54°C.56°D.66°7.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8B.4C.6D.无法计算8.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若CD=4,则点D到AB的距离是()A.4B.3C.2D.59.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DEB.DF∥ACC.∠E=∠ABCD.AB∥DE10.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.3811.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°12.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共6个小题,每题4分,共24分)13.计算4a2b÷2ab=________;14.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:如果卖出的香蕉数量用x(千克)表示,售价用y(元)表示,则y与x的关系式为_________;15.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠ADE=________;16.等腰三角形的腰长为13cm,底边长为10cm,则其面积为________;17.如图,在△ABC中,DE是AB的垂直平分线,交BC于点D,交AB于点E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是________cm.18.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是________;三、解答题:(本大题共9个小题,共78分)19.计算:(1)312-20190-│-5│;(2)(a+2)2-(a+1)(a-1).20.先化简,再求值:[(x+y)2-y(2x+y)-8xy]÷(2x),其中x=2,y=12.21.在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(______________________).∴∠B=_______(_____________________).又∵∠B=∠D(已知),∴∠DCE=∠D(_____________________).∴AD∥BE(_____________________).∴∠E=∠DFE(_____________________).22.如图,点E、F在线段AB上,且AD=BC,∠A=∠B,AE=BF.求证:DF=CE.23.如图所示的一块草地,已知AD=4m,CD=3m,AB=12m,BC=13m,且∠CDA=90°,求这块草地的面积.24.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在格点上,完成下列要求:(1)画出△ABC关于直线l对称的△A1B1C1;(2)求出△A1B1C1的面积;(3)求AC边上的高.25.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按相同路线从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S和时间t的关系.象回答下列问题:(1)甲和乙哪一个出发的更早?早出发多长时间?(2)甲和乙哪一个早到达B城?早多长时间?(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少?(4)请你根据图象上的数据,求出乙出发后多长时间追上甲?26.已知:CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,如图1,若∠BCA=90°,∠α=90°,则BE______CF;并说明理由.(2)如图2,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想:__________.并说明理由.27.如图,已知在△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点,点P在线段BC上以3厘米每秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经一秒后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度是多少时,能够使△BPD与△CQP全等?答案与解析一、选择题(本大题共12个小题,每小题4分,共48分.)1.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.310B.110C.19D.18【答案】B【解析】分析:直接利用概率公式求解.详解:这句话中任选一个汉字,这个字是“绿”的概率=110.故选B.点睛:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.2.下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3·a2=a6D.(2x)3=2x3【答案】B【解析】【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【详解】:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(2x)3=8x3,所以此选项错误;故选B.【点睛】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.3.下列图形是轴对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A、B、D都不是轴对称图形,C是轴对称图形,故选C.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念,找出图形的对称轴.4.数据0.000063用科学记数法表示应为()A.6.3×10-5B.0.63×10-4C.6.3×10-4D.63×10-5【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000063=6.3×10-5,故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.已知一个等腰三角形的一个底角为30°,则它的顶角等于()A.30°B.40°C.75°D.120°【答案】D【解析】【分析】根据已知可得到另一底角度数,根据三角形内角和定理即可求得顶角的度数.【详解】因为等腰三角形的两个底角相等,已知一个底角是30°,所以它的顶角是180°-30°-30°=120°.故选D.【点睛】此题考查等腰三角形的性质及三角形内角和定理的运用.本题给出了底角是30°,问题就变得比较简单,属于基础题.6.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34°B.54°C.56°D.66°【答案】C【解析】【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°-34°=56°.【详解】如图,∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°-34°=56°,故选C.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.7.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8B.4C.6D.无法计算【答案】A【解析】利用勾股定理,由Rt△ABC中,BC为斜边,可得AB2+AC2=BC2,代入数据可得AB2+AC2+BC2=2BC2=2×22=8.故选A.8.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若CD=4,则点D到AB的距离是()A.4B.3C.2D.5【答案】A【解析】【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【详解】如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选A.【点睛】本题主要考查了角平分线的性质的应用,注意:角平分线上的点到角两边的距离相等.9.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DEB.DF∥ACC.∠E=∠ABCD.AB∥DE【答案】A【解析】【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.38【答案】D【解析】【分析】此概率为黑色的面积除以总方格的面积,即可得出答案.【详解】解:黑色面积=1.5×4=6,格子总数为16,所以概率为63168,故选:D.【点睛】本题考查了题意的理解以及概率的使用,熟悉运用是解决本题的关键.11.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°【答案】D【解析】因为△ABC是等边三角形,所以∠ABD=∠BCE=60°,AB=BC.因为BD=CE,所以△ABD≌△BCE,所以∠1=∠CBE.因为∠CBE+∠ABE=60°,所以∠1+∠ABE=60°.因为∠2=∠1+∠ABE,所以∠2=60°.故选D.12.如图,矩形ABCD中,AB=1,BC=2
本文标题:北师大版七年级下册数学《期末考试卷》(带答案)
链接地址:https://www.777doc.com/doc-6590285 .html