您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 20162017学年广东省佛山市高一上期末数学试卷
小明文库页(共16页)2016-2017学年广东省佛山市高一(上)期末数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={0,2,4},则(∁UA)∩B为()A.{0,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}2.(5分)函数y=的定义域为()A.(0,1]B.(﹣∞,1)C.(﹣∞,1]D.(1,+∞)3.(5分)下列选项中,与sin2017°的值最接近的数为()A.﹣B.﹣C.﹣D.﹣4.(5分)设a=3e,b=πe,c=π3,其中e=2.71828…为自然对数的底数,则a,b,c的大小关系是()A.a>c>bB.a>b>cC.c>a>bD.c>b>a5.(5分)设函数f(x)是定义在R上的奇函数,则下列结论中一定正确的是()A.函数f(x)+x2是奇函数B.函数f(x)+|x|是偶函数C.函数x2f(x)是奇函数D.函数|x|f(x)是偶函数6.(5分)函数f(x)=πx+log2x的零点所在区间为()A.[0,]B.[,]C.[,]D.[,1]7.(5分)已知函数f(x)是偶函数,且f(x﹣2)在[0,2]上是减函数,则()A.f(0)<f(﹣1)<f(2)B.f(﹣1)<f(0)<f(2)C.f(﹣1)<f(2)<f(0)D.f(2)<f(0)<f(﹣1)8.(5分)若sinα+cosα=2,则tan(π+α)=()A.B.C.D.9.(5分)下列选项中,存在实数m使得定义域和值域都是(m,+∞)的函数是()A.y=exB.y=lnxC.y=x2D.y=10.(5分)函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如小明文库页(共16页)图所示,则关于f(x)的说法正确的是()A.对称轴方程是x=+2kπ(k∈Z)B.φ=﹣C.最小正周期为πD.在区间(,)上单调递减11.(5分)点P从点O出发,按逆时针方向沿周长为l的正方形运动一周,记O,P两点连线的距离y与点P走过的路程x为函数f(x),则y=f(x)的图象大致是()A.B.C.D.12.(5分)已知函数f(x)=ex+2(x<0)与g(x)=ln(x+a)+2的图象上存在关于y轴对称的点,则实数a的取值范围是()A.(﹣∞,e)B.(0,e)C.(e,+∞)D.(﹣∞,1)二、填空题(共4小题,每小题5分,满分20分)13.(5分)计算()+lg﹣lg25=.14.(5分)若f(x)=x2﹣x,则满足f(x)<0的x取值范围是.15.(5分)动点P,Q从点A(1,0)出发沿单位圆运动,点P按逆时针方向每小明文库页(共16页)秒钟转弧度,点Q按顺时针方向每秒钟转弧度,设P,Q第一次相遇时在点B,则B点的坐标为.16.(5分)某投资公司准备在2016年年底将1000万元投资到某“低碳”项目上,据市场调研,该项目的年投资回报率为20%.该投资公司计划长期投资(每一年的利润和本金继续用作投资),若市场预期不变,大约在年的年底总资产(利润+本金)可以翻一番.(参考数据:lg2=0.3010,lg3=0.4771)三、解答题(共6小题,满分70分)17.(10分)已知α是第二象限角,且cos(α+π)=.(1)求tanα的值;(2)求sin(α﹣)•sin(﹣α﹣π)的值.18.(12分)已知函数f(x)=1﹣为定义在R上的奇函数.(1)试判断函数的单调性,并用定义加以证明;(2)若关于x的方程f(x)=m在[﹣1,1]上有解,求实数m的取值范围.19.(12分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0π2πxAsin(ωx+φ)02﹣20(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)将函数y=f(x)的图象向左平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.20.(12分)设函数f(x)=x2﹣ax+1,x∈[﹣1,2].(1)若函数f(x)为单调函数,求a的取值范围;(2)求函数f(x)的最小值.小明文库页(共16页)21.(12分)已知函数f(x)=.(1)求f(f());(2)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶不动点,求函数f(x)的二阶不动点的个数.22.(12分)已知函数f(x)=ax2+4x﹣1.(1)当a=1时,对任意x1,x2∈R,且x1≠x2,试比较f()与的大小;(2)对于给定的正实数a,有一个最小的负数g(a),使得x∈[g(a),0]时,﹣3≤f(x)≤3都成立,则当a为何值时,g(a)最小,并求出g(a)的最小值.小明文库页(共16页)2016-2017学年广东省佛山市高一(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={0,2,4},则(∁UA)∩B为()A.{0,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}【解答】解:∵全集U={0,1,2,3,4},集合A={1,2,3},B={0,2,4},∴∁UA={0,4},则(∁UA)∩B={0,4}.故选:A2.(5分)函数y=的定义域为()A.(0,1]B.(﹣∞,1)C.(﹣∞,1]D.(1,+∞)【解答】解:要使原函数有意义,则1﹣x>0,即x<1.∴函数y=的定义域为(﹣∞,1).故选:B.3.(5分)下列选项中,与sin2017°的值最接近的数为()A.﹣B.﹣C.﹣D.﹣【解答】解:sin2017°=sin(5×360°+217°)=sin217°=﹣sin37°,∵30°<37°<45°,sin30°=,sin45°=,而<<,故﹣sin37°≈﹣,故选:B.4.(5分)设a=3e,b=πe,c=π3,其中e=2.71828…为自然对数的底数,则a,b,小明文库页(共16页)c的大小关系是()A.a>c>bB.a>b>cC.c>a>bD.c>b>a【解答】解:∵a=3e<b=πe<c=π3,∴c>b>a,故选:D.5.(5分)设函数f(x)是定义在R上的奇函数,则下列结论中一定正确的是()A.函数f(x)+x2是奇函数B.函数f(x)+|x|是偶函数C.函数x2f(x)是奇函数D.函数|x|f(x)是偶函数【解答】解:∵函数f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),A.f(﹣x)+(﹣x)2=﹣f(x)+x2,则函数不是奇函数.故A错误,B.f(﹣x)+|﹣x|=﹣f(x)+|x|,则函数不是偶函数.故B错误,C.(﹣x)2f(﹣x)=﹣x2f(x)为奇函数,满足条件.故C正确,D.|﹣x|f(﹣x)=﹣|x|f(x)为奇函数,故D错误,故选:C6.(5分)函数f(x)=πx+log2x的零点所在区间为()A.[0,]B.[,]C.[,]D.[,1]【解答】解:∵f()=<0,f()=<0,f()=>0,f(1)=π,∴只有f()•f()<0,∴函数的零点在区间[,]上.故选C.7.(5分)已知函数f(x)是偶函数,且f(x﹣2)在[0,2]上是减函数,则()A.f(0)<f(﹣1)<f(2)B.f(﹣1)<f(0)<f(2)C.f(﹣1)<f(2)<f(0)D.f(2)<f(0)<f(﹣1)小明文库页(共16页)【解答】解:∵f(x)是偶函数,且f(x﹣2)在[0,2]上是减函数,∴f(x)在[﹣2,0]上是减函数,则f(x)在[0,2]上是增函数,则f(0)<f(1)<f(2),即f(0)<f(﹣1)<f(2),故选:A8.(5分)若sinα+cosα=2,则tan(π+α)=()A.B.C.D.【解答】解:∵sinα+cosα=2,∴=2,可得=1,∴α+=2,k∈Z.∴,则tan(π+α)=tanα==tan=.故选:D.9.(5分)下列选项中,存在实数m使得定义域和值域都是(m,+∞)的函数是()A.y=exB.y=lnxC.y=x2D.y=【解答】解:函数y=ex在定义域内为增函数,而ex>x恒成立,∴不存在实数m使得定义域和值域都是(m,+∞);函数y=lnx在定义域内为增函数,而x>lnx恒成立,∴不存在实数m使得定义域和值域都是(m,+∞);当m=0时,y=x2的定义域和值域都是(m,+∞),符合题意;对于,由,得x2=﹣1,方程无解,∴不存在实数m使得定义域和值域都是(m,+∞).故选:C.小明文库页(共16页)10.(5分)函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则关于f(x)的说法正确的是()A.对称轴方程是x=+2kπ(k∈Z)B.φ=﹣C.最小正周期为πD.在区间(,)上单调递减【解答】解:由函数图象可得:A=1,周期T=2[﹣(﹣)]=2π,可得C错误,可得:ω===1,由点(,0)在函数图象上,可得:sin(+φ)=0,解得:φ=kπ﹣,k∈Z,又|φ|<,可得:φ=,故B错误,可得:f(x)=sin(x+).令x+=kπ+,k∈Z,解得函数的对称轴方程为:x=kπ+,k∈Z,故A错误;令2kπ+≤x+≤2kπ+,k∈Z,解得:2kπ+≤x≤2kπ+,k∈Z,可得函数的单调递减区间为:[2kπ+,2kπ+],k∈Z,由于(,)⊂[,],可得D正确.故选:D.11.(5分)点P从点O出发,按逆时针方向沿周长为l的正方形运动一周,记O,P两点连线的距离y与点P走过的路程x为函数f(x),则y=f(x)的图象大致是()小明文库页(共16页)A.B.C.D.【解答】解:O,P两点连线的距离y与点P走过的路程x为函数f(x),当p到达对角线的顶点前,y=f(x)=,可知0≤x≤时,函数的图象只有C满足题意.函数的图象具有对称性,C满足题意.故选:C.12.(5分)已知函数f(x)=ex+2(x<0)与g(x)=ln(x+a)+2的图象上存在关于y轴对称的点,则实数a的取值范围是()A.(﹣∞,e)B.(0,e)C.(e,+∞)D.(﹣∞,1)【解答】解:由题意知,方程f(﹣x)﹣g(x)=0在(0,+∞)上有解,即e﹣x﹣ln(x+a)=0在(0,+∞)上有解,即函数y=e﹣x与y=ln(x+a)在(0,+∞)上有交点,则lna<1,即0<a<e,则a的取值范围是:(0,e).故选:B.小明文库页(共16页)二、填空题(共4小题,每小题5分,满分20分)13.(5分)计算()+lg﹣lg25=﹣.【解答】解:原式=﹣lg4﹣lg25=﹣lg100=﹣2=﹣,故答案为:﹣.14.(5分)若f(x)=x2﹣x,则满足f(x)<0的x取值范围是(0,1).【解答】解:f(x)<0即为x2<,由于x=0不成立,则x>0,再由两边平方得,x4<x,即为x3<1解得x<1,则0<x<1,故解集为:(0,1).故答案为:(0,1).15.(5分)动点P,Q从点A(1,0)出发沿单位圆运动,点P按逆时针方向每秒钟转弧度,点Q按顺时针方向每秒钟转弧度,设P,Q第一次相遇时在点B,则B点的坐标为(﹣,﹣).【解答】解:设P、Q第一次相遇时所用的时间是t,则t•+t•|﹣|=2π,∴t=4(秒),即第一次相遇的时间为4秒;设第一次相遇点为B,第一次相遇时P点已运动到终边在•4=的位置,则xB=﹣cos•1=﹣,
本文标题:20162017学年广东省佛山市高一上期末数学试卷
链接地址:https://www.777doc.com/doc-6814042 .html